Evaluating CMIP5 model ocean biogeochemistry and Southern Ocean carbon uptake using APO: Present day performance and future prediction

Cindy Nevison

University of Colorado / INSTAAR

R. Keeling, J. Bent, M. Manizza, M. Kahru, B. G. Mitchell

Scripps Institution of Oceanography

Britt Stephens

National Center for Atmospheric Research

Acknowledgements:

NASA Ocean Biology and Biogeochemistry, Andrew Schuh, Anna Cabre, Mo Green, Irina Marinov and CMIP5 modelers

METHODS: Air-Sea O₂, CO₂, N₂ Fluxes from 8 CMIP5 Models → Atmospheric Potential Oxygen (APO)

Observed APO South Pole

APO $\approx O_2/N_2 + 1.1 CO_2$ (land + ocean)

Modeled APO South Pole

Model APO = $O_2/x_{O2} - N_2/x_{N2} + 1.1 CO_{2(ocean)}/x_{O2}$

Air-sea fluxes from MPIM

Modeled APO South Pole

Model APO = $O_2/x_{O2} - N_2/x_{N2} + 1.1 CO_{2(ocean)}/x_{O2}$

Air-sea fluxes from IPSL

Methodology – more details

1. Assemble monthly air-sea fluxes of O_2 , CO_2 and N_2^* from 8 CMIP5 ocean biogeochemistry models:

Historical (1997-2000) RCP8.5 (2097-2100)

2. Atmospheric transport model simulations with GEOS-Chem (2 x 2.5°) Model APO = $O_2/x_{O2} - N_2/x_{N2} + 1.1 \text{ CO}_2/x_{O2}$

3. Compare Model and Observed APO mean seasonal cycles

*N₂ fluxes estimated from model net surface heat flux: $fgN_2 = QS_T/C_p$ (with Jin mods)

APO: GEOS-Chem v. Observed at SPO

APO: GEOS-Chem v. Observed

Cape Grim

Palmer Station

APO: Transcom Matrix Method

Column APO: Model v. Observed

Observations from HIPPO aircraft campaign, Jonathan Bent, Ph.D. thesis

Models that best capture the observed APO seasonal cycle generally predict smaller Southern Ocean CO₂ sink

Models that best capture the observed APO seasonal cycle generally predict smaller Southern Ocean CO₂ sink

Amplitude of model APO seasonal cycle is correlated to Southern Ocean productivity

Amplitude of model APO seasonal cycle is correlated to Southern Ocean productivity

³⁰ (a)pCO₂ bias 10 -10uatm -30-50 -70 Winter Time mean Summer beer cantant cantant haden when the here and the and t

JIANG ET AL.

Future APO under RCP8.5

Southern Ocean CO_2 sink under RCP8.5 correlated to present day sink

APO Historical v RCP8.5 at South Pole

Future changes in NPP under RCP8.5 in CMIP5 models (Bopp et al., 2013)

Figures show 2095-1995 difference

d. Integrated net primary productivity change

Summary

- 1. CMIP5 ocean models reproduce observed APO cycles in the Southern Ocean region with varying skill. Ranking of models consistent across matrix method, column average, and GEOS-Chem results at SPO.
- 2. Models that capture present-day APO cycle the best tend to predict a smaller Southern Ocean CO_2 sink, for both historical and RCP8.5 runs.
- 3. CMIP5 Models predict relatively small future changes in the O_2 component of APO under RCP8.5 at Southern Hemisphere stations, but some predict large changes in the oceanic CO_2 component.