Is climate change affecting the biotic pump of the Pacific Ocean?

Sander van der Laan¹

Andrew C. Manning¹, Laure Resplandy², Laurent Bopp³, Penelope A. Pickers¹, Ingrid T. van der Laan-Luijkx⁴ and Ralph F. Keeling²

- 1: University of East Anglia, Norwich, United Kingdom.
- 2: Scripps Institution of Oceanography, La Jolla, USA.
- 3: Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France.
- 4: Meteorology and Air Quality Group, Wageningen, the Netherlands.

Outline

- 1. Introduction/Research question
- 2. Methods
- 3. Results
- 4. Preliminary conclusions/discussion
- 5. Future strategy

Introduction

- Atmospheric CO₂ mole fractions suggest trends towards earlier autumn/winter shrinking (respiring) of terrestrial biosphere.
- Suggests a shorter net carbon uptake period, correlated with increasingly warmer autumn temperatures. [Piao et al, Nature, 2008]

Introduction

How about the marine biosphere? What can we tell from our APO records?

Methods

- APO flask data from Scripps network (Pacific focus)
- De-trend with CCGCRV curve fitting routines (Python version)
- <u>"zero-crossing" analysis:</u>
 Up, Down, Difference (i.e. season length)
- Also for model output: **NEMO-PISCES* + TM3**

^{*}Nucleus for European Modelling of the Ocean Pelagic Interactions Scheme for Carbon and Ecosystem Studies

Methods

Curve fitting

Methods

Curve fitting

Method/Results

long term trend anomaly up & down

Observations 1990-2015

long term trend anomaly **up** (O₂ release) & **down** (O₂ uptake)

APO

Observations 2000-2015

long term trend anomaly **up** (O₂ release) & **down** (O₂ uptake)

APO

Observations 1990-2015

long term trend season length **POS** (O₂ release) & **NEG** (O₂ uptake)

APO

Observations 2000-2015

long term trend season length POS (O₂ release) & NEG (O₂ uptake)

Preliminary conclusions/discussion

- O₂ uptake season (winter) is coming (increasingly) earlier
- O₂ release period is getting smaller and O₂ uptake period is getting longer
- Is oceanic O₂ uptake increasing? (need to check amplitude)
- Something seems to be going on in the pacific and perhaps even globally (MLO)
- -> Can we model this and investigate the driving processes?

Model vs Observations long term trend anomaly **up** (O₂ release) & **down** (O₂ uptake)

Model vs Observations long term trend season length POS (O_2 release) & NEG O_2 uptake)

Where to go from here..(?)

• (Footprint based?) correlations SST, PDO, SSTNINO3.4 chlorophyll

Model-sensitivity tests (winds etc.)

• N₂O, ventilation correction

• Other?

Is it related?

Lanschutzer et al 2015, Science

Ocean carbon sink in the 2014 Global Carbon Budget

