Can O_2/N_2 measurements help to constrain global total fossil fuel emission?

Prabir Patra (JAMSTEC), Rona Thompson (NILU), Tazu Saeki (JAMSTEC) and potential collaborators

2nd Decadal APO meeting
San Diego, 18 Sept 2015
Background: Synthesis of Land fluxes from TDIs and DGVMs

Unfair to compare inversion fluxes (include all CO$_2$ component) with the DGVMs (dynamic vegetation models).

Why is the Asia (temperate and boreal) regions so large?
Objective: To develop a grand synthesis of the net GHG (CO$_2$, CH$_4$, N$_2$O, black carbon and carbon monoxide) balance of Asia, excluding Siberia, using bottom-up and top-down constraints and estimates covering the 2000-2012 period.

References:
3rd APN workshop at JAMSTEC, Yokohama, 8-10 April 2014
TransCom meeting in Groningen University, 24-26 June 2014
Asian GAW meeting, KRISS, Daejeong, 20-22 October 2014
4th APN/NIES workshop at JAMSTEC, Yokohama, 2-4 March 2015
Top-down constraints – expected models

| Model | CO₂ |
|---------------|-----|---
| TM5¹ | ✔✔ | -
| LMDZ-PYVAR⁴ | ✔✔ | -
| ACTM⁵ | ✔✔ | -
| NIES-TM⁶ | ✔✔ | -

1. WUR, JRC, NOAA
2. MPI-BGC
3. Univ. of Edinburgh
4. LSCE and NILU (N₂O)
5. JAMSTEC
6. NIES
7. MRI JMA
8. NILU
9. MRI/U. Toronto
10. JAMSTEC
11. Emory Univ.
12. Univ. Chile

✔️: Longterm, 2000-2012
✔️: focussed, 2010-2012
Top-down Asian CO$_2$ budget using 3 different (adjusted a posteriori) fossil fuel inventories

(Thompson et al., in review)
Global total fossil fuel (FF) emissions

GEO & IEA maps: courtesy of Ingrid van der Laan-Luijkx
East Asian (China, Japan, Korea) FF emissions
East Asian land flux for different FF emissions

84 region CO$_2$ inversions using ACTM: courtesy of Tazu Saeki
Global land flux for different FF emissions
FF Emissions

Land Fluxes

Inversions by T. Saeki
In search of independent evidence
53-Regions (land only) Inverse Model for CH$_4$ at JAMSTEC

\[C_S = \left(G^T C_D^{-1} G + C_{S0}^{-1} \right)^{-1} \]

\[S = S_0 + \left(G^T C_D^{-1} G + C_{S0}^{-1} \right)^{-1} G^T C_D^{-1} (D - D_{ACTM}) \]

- S_0 = regional prior sources
- C_{S0} = Prior source covariance = 70% of region-total emission for each month
- D = atmospheric concentration data
- Data covariance $C_D = 5$ ppb for measurements + scaled RSD for model uncertainty
- D_{ACTM} = ACTM simulation using S_0
- G = Green’s functions for regional source-receptor relationships
Net CH$_4$ emissions for 6 a priori cases (top) and modelled loss rates (bottom)

Source types

Natural:
- VISIT: Wetl & Rice
- GISS: Termite
- GFED: Bio. Burn
- SRON: Ocean
- SRON: MudVolcano

Anthropogenic:
- (EDGAR4.2)
- IPCC_1A (transport)
- IPCC_1B (Fugitive)
- IPCC_2 (Industry)
- IPCC_4A (Ent. Ferm.)

Soil sink: VISIT

For Prior CH$_4$ emission cases (top panel), only one of emission type has trend, except for E42.
More on CH$_4$ inversion – trends and interannual variability

Patra et al., JMSJ, In review, 2015
China FF emissions – new inventory

Independent constraints for global FF CO$_2$?

- **APO** – since oxygen is consumed at certain ratios during FF burning
 - Some of the FF (coal) signal is not distinct
 - Regional flux constraint using continuous measurements downwind

- **$\delta^{13}C$** : not only dependent on FF emissions

- **$\Delta^{14}C$** : seems the most independent so far

- Others
Estimation of Fossil Fuel Source Using O2/N2 and CO2 (ver: 20 April 2015)

Assuming:
- O2:CO2 for fossil fuel
- O2:CO2 for land exchange
- Z(O2) for ocean outgassing

<table>
<thead>
<tr>
<th></th>
<th>fossil</th>
<th>cement</th>
<th>land</th>
<th>ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDIAC</td>
<td>7.64</td>
<td>0.33</td>
<td>0.84</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>6.47</td>
<td>0.23</td>
<td>0.07</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>7.56</td>
<td>0.31</td>
<td>0.54</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>8.73</td>
<td>0.43</td>
<td>1.85</td>
<td>3.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>fossil</th>
<th>cement</th>
<th>land</th>
<th>ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEA</td>
<td>7.39</td>
<td>0.33</td>
<td>0.52</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>6.29</td>
<td>0.23</td>
<td>-0.16</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>7.34</td>
<td>0.31</td>
<td>0.27</td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td>8.29</td>
<td>0.43</td>
<td>1.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

APO at SIO surface sites
Summary

• We are trying to estimate CO$_2$ fluxes from 3 Asia regions, and understand source of uncertainties
 – Transport: using multimodel
 – Prior fossil fuel emissions: using multiple inventory emissions

• Assumption of fossil fuel emissions influence the absolute and trends in inversion fluxes

• CH$_4$ inversion suggest a much slower increase in emissions from Chinese coal industry (This study, Tohjima et al., Thompson et al.)

• Independent check on global and regional fossil fuel emissions is needed using related chemical tracers
 – Impact on NH-SH APO gradient?