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Collection of middle tropospheric air samples over the
western North Pacific
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*Flight : once per month from Atsugi Base (35.45°N, 139.45°E), Kanagawa, Japan, to
Minamitorishima (MNM; 24.28°N, 153.98°E).

=24 air samples are pressurized into 1.7 L titanium flasks whose inner walls are
silica-coated to an absolute pressure of 0.4 MPa.

*A set of 17-20 samples are collected during the level flight (about 6 km a.s.l.) and
others are obtained during the descent portion at MNM.



Collection of middle tropospheric air samples over the
western North Pacific
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*CO,, CH,;, N,O and CO concentrations were analyzed at Japan Meteorological
Agency (JMA) (Tsuboi et al. 2013 AMT; Niwa et al., 2014 JMS))

-3(0,/N,), 8(Ar/N,), stable isotopic ratios of N,, O, and Ar (3'°N, 80 and §%°Ar)
were analyzed at National Institute of Advanced Industrial Science and Technology
(AIST) (Ishidoya & Murayama, 2014 Tellus B; Ishidoya et al. 2014 SOLA)




Collection of middle tropospheric air samples over the
western North Pacific
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= Latitudinal difference seen in seasonal APO cycles
* Altitudinal gradient of annual average APO over MNM

* Latitudinal gradient of annual average APO
Updated from Ishidoya et al. (2014)



Measurement system of O,/N, and Ar/N, ratios, CO, concentration and

stable isotopic ratios of N,, O, and Ar (the slides presented in GGMT)
Temporal changes in measured values of the working standard air

= against the primary standard air. _ Updated from Ishidoya and Murayama (2014)
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Preliminary observational results of O,/N,, CO, and Ar/N, ratios at

Tsukuba, Japan (the slides presented in GGMT)
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d(Ar/N,) varied basically in phase with APO,
and both of them showed clear seasonal
cycles. APO decreases secularly. 6(Ar/N,) may

increase slightly? (not clear)
APO: 1 minutes mean, d(Ar/N,): 20 hours mean
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The APO/d(Ar/N,) ratio was 3.9 for
their seasonal amplitudes. The
seasonal APO cycle driven by
solubility change accounts for 21%
of the observed seasonal APO
cycle.



O(Ar/N ,) (per meg)

80 of O, (per meg)

Relationships of the measured d(Ar/N,), 8180 and 3*°Ar with 6°N

obtained from the air samples collected on the aircraft
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d°N, 680 and 4*°0 (and &(Ar/N,)) should
be almost constant in the troposphere,
however, unrealistic large variations of
them were observed.

The significant variations are attributable to
some kind of artificial fractionations caused
by the flask air sampling onboard the
C-130H aircraft.
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Linear regression analyses give slopes of
16.4, 1.56 and 2.72 per meg per meg for the

O(Ar/N,)/d*N, 06'%0/6°N and O&%°Ar/d*°N
ratios, respectively. These ratios are very
close to those expected from thermal
diffusion fractionations, however, clearly
different from those expected from the
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theoretical mass-dependent fractionation

C
due to a pressure gradient.
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Although the mechanism how the thermal
diffusion fractionation occurs during the air
sampling is not clear, it may be related to the
fact that the ambient air, supplied from the
jet engine of the C-130H to pressurize the
cabin, is split into several branches. Since the
air samples are collected through one of the
branches, the fractionation of air molecules
could be attributed to a temperature
gradient at the branches.



Correction of the thermally-diffusive fractionation superimposed on

the measured 8(0,/N,) using the simultaneously-measured 3(Ar/N,)
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respectively, determined from our experiment on the thermal diffusion fractionation.
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An example of the spatial variations in the corrected 6(0,/N,) ( June 2012)
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=>land biosphere ?

Increasing 8(0,/N,)cor. with decreasing CO, is
observed at higher latitudes north of 33°N. In
this region, APO shows no significant changes,
suggesting an intrusion of air masses influenced
by the terrestrial biospheric activities and/or
fossil fuel combustions. This conjecture is based
on the backward trajectory analysis using the
NOAA-HYSPRIT showing air parcels rising from
the equatorial surface region into the middle
troposphere north of 33°N. These results
indicate that the §(O,/N,)cor. data are able to
capture synoptic-scale variations.

i Red: high O,/N, and low CO,
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0(0,/N,).,,, CO, concentration and APO observed at height interval

between 5.1-6.9 km at each latitude over the western North Pacific
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d(0,/N,)cor. and APO show
clear secular decreases, while
CO, concentrations show
secular increases.

(0,/N,)cor. (CO,
concentration) shows clear
seasonal cycles at all latitudes
with summertime maxima and
minima (minima and maxima),
respectively.

APO also shows clear seasonal
cycles, however, its seasonal
amplitude decreases
significantly toward the lower
latitudes.



0(0,/N,).,,, CO, concentration and APO observed at height interval

between 5.1-6.9 km at each latitude over the western North Pacific
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The amplitude of the mid-tropospheric
seasonal APO cycle at 33.5°N was found
to be twice as large as that observed at
25.5°N, whereas the corresponding
latitudinal difference in the seasonal
CO, amplitude was less than 10%
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Comparison between the observed and simulated APO

over the western North Pacific

The atmospheric transport models

STAG e bl

(e.g. Taguchi et a., 2002, Tellus B)- Wy, i :

NICAM-TM AL S
(e.g. Niwa et al., 2011, JMS))

Seasonal air-sea
O flux anomaly

(mol m-2 month'l)

The O, and N, fluxes incorporated
in the transport models

TransCom monthly air-sea O, and
N, fluxes climatology
(Garcia and Keeling, 2001)

Garcia and Keeling (2001, JGR)



Comparison between the observed and simulated APO over the western North Pacific
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The amplitudes of seasonal cycles of
the simulated APO underestimate
the observed amplitudes. The
underestimation is more significant
in the simulated APO by STAG than
that by NICAM-TM.

=>similar underestimation is also
found in the middle to upper
troposphere over Sendai-Fukuoka,
Japan (Ishidoya et al., 2012).

Both the simulated APO by STAG and
NICAM-TM show the significant
decrease of the seasonal amplitudes
toward the lower latitude.
=>consistent with the observed
characteristic.



Comparison between the observed and simulated APO over the western North Pacific
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The amplitudes of seasonal cycles of
the simulated APO underestimate
the observed amplitudes. The
underestimation is more significant
in the simulated APO by STAG than
that by NICAM-TM.

=>similar underestimation is also
found in the middle to upper
troposphere over Sendai-Fukuoka,
Japan (Ishidoya et al., 2012).

Both the simulated APO by STAG and
NICAM-TM show the significant
decrease of the seasonal amplitudes
toward the lower latitude.
=>consistent with the observed
characteristic.



Comparison between the observed and simulated APO over the western North Pacific

Purple: Ratio of the seasonal amplitude of APO at 33.5 to that at 25.5°N
(In case of CO,: The corresponding ratio is about 1.1)
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Comparison between the observed and simulated APO over the western North Pacific

Purple: Ratio of the seasonal amplitude of APO at 33.5 to that at 25.5°N
(In case of CO,: The corresponding ratio is about 1.1)
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These results suggest that the mid-tropospheric seasonal APO cycle in
the northern low latitudes is reduced by a superposition of the anti-
phase seasonal APO cycles in the northern and southern hemispheres.

Therefore, it is expected the seasonal APO cycles observed in the
troposphere over the subtropical region will be used to evaluate the
interhemispheric air mixing.
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These results suggest that the mid-tropospheric seasonal APO cycle in
the northern low latitudes is reduced by a superposition of the anti-
phase seasonal APO cycles in the northern and southern hemispheres.

Therefore, it is expected the seasonal APO cycles observed in the
troposphere over the subtropical region will be used to evaluate the
interhemispheric air mixing.
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0(0,/N,).,,, CO, concentration and APO observed in the troposphere

over Minamitorishima (MNM), Japan.
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The amplitudes of seasonal §(0,/N,)cor., CO, concentration and APO cycles
found to decrease with increasing height over MNM (24.28°N).



The observed and simulated APO in the troposphere over MNM
Annual average vertical gradients of
d(0,/N,)cor., CO, concentration and APO

Average seasonal APO cycles
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The observed altitudinal decrease of the seasonal amplitudes is relatively well

reproduced by the simulated APO by NICAM-TM. Both the annual average vertical
gradients in the observed and simulated APO are very small (within 2 per meg),
which may suggest that there is no annual average significant source and sink of O,

in the ocean around MINM.



Latitudinal gradients in annual average APO from 25.5 to 33.5 °N

o 68 .
O T b B
S 66 B P :\\\\,.\ IIIII 0
: RS e
g AL Te---mmTTTTT e
o
% ; -®- Observation 1
2= |-+ Model (NICAM)
— -6
ol —398.0
@)
43975 O
. @)
________ @@ 2
&~ ® 3970 &
<)
—3965 5
| | | I 396.0
26 28 50 - ™

Latitude (°N)
The annual average APO was higher at 25.5°N than that at 33°N by about 4 per meg,
and the APO simulated without considering annual average air-sea O, flux
underestimates the latitudinal gradient. This is consistent with an existence of sea-
to-air annual average O, flux in the equatorial region (e.g. Tohjima et al., 2012).
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Concluding Remarks

We have analyzed the air samples collected in the middle troposphere over the
western North Pacific since May 2012. The significant artificial fractionation due to
thermal diffusion superimposed on the observed §(0,/N,) were corrected by using
the simultaneously-observed d(Ar/N,). =>This method will enable us to analyze
0(0,/N,) of air samples obtained from various kinds of aircrafts.

The corrected (0,/N,) and the APO showed prominent seasonal cycles
superimposed on clear secular downward trends. The amplitude of the mid-
tropospheric seasonal APO cycle at 33.5°N was found to be twice as large as that

observed at 25.5°N.

"By comparisons between the observed and simulated seasonal APO cycles, it was
suggested that the mid-tropospheric seasonal APO cycle in the northern low
latitudes is reduced by the anti-phase seasonal APO cycles in the northern and

southern hemispheres.

*The difference between the annual average APO at the surface and that in the mid-
troposphere are found to be within 2 per meg over Minamitorishima, Japan.

*The annual average APO was higher at 25.5°N than that at 33°N by about 4 per meg,
which may reflect an annual average sea-to-air O, flux in the equatorial region.



