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New wine in old bottles:
a little history

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 12, NO. 2, PAGES 213-230, JUNE 1998

Testing global ocean carbon cycle models using measurements
of atmospheric O, and CO, concentration

Britton B. Stephens,’ Ralph F. Keeling,' Martin Heimann,” Katharina D. Six,”
Richard Murnane,3 and Ken Caldeira*

Abstract. We present a method for testing the performance of global ocean carbon cycle
models using measurements of atmospheric O, and CO, concentration. We combine these
measurements to define a tracer, atmospheric potential oxygen (APO =~ O, + CO,), which is
conservative with respect to terrestrial photosynthesis and respiration. We then compare ob-
servations of APO to the simulations of an atmospheric transport model which uses ocean-




GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 15, NO. 4, PAGES 783 803, DECEMBER 2001

Air-sea flux of oxygen estimated from bulk data:
Implications for the marine and atmospheric oxygen
cycles

Nicolas Gruber,! Manuel Gloor, Song-Miao Fan, and Jorge L. Sarmiento
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA

Abstract. We estimate the annual net air-sea fluxes of oxygen for 13 regions on the basis of a
steady state inverse modeling technique that is independent of air-sea gas exchange
parameterizations. The inverted data consist of the observed oceanic oxygen concentration after a
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Atmospheric potential oxygen: New
observations and their implications for some
atmospheric and oceanic models

Mark B;’:lttle,1 Sara Mikaloff Fletcher,2 Michael L. Bender,3 Ralph F. Keeling,4
Andrew C. Manning_d,r,‘*’S Nicolas Gruber,2 Pieter P. Tans,6 Melissa B. Hendricks,3
David T. Ho,>*” Caroline Simonds,'® Robert Mika,> and Bill Paplawsky4

Received 14 April 2005; revised 10 October 2005; accepted 31 October 2005; published 17 February 2006.

[1] Measurements of atmospheric O,/N, ratios and CO, concentrations can be combined
into a tracer known as atmospheric potential oxygen (4P0 = O,/N, + CO,) that is
conservative with respect to terrestrial biological activity. Consequently, APO reflects
primarily ocean biogeochemistry and atmospheric circulation. Building on the work of
Stephens et al. (1998), we present a set of APO observations for the years 1996-2003
with unprecedented spatial coverage. Combining data from the Princeton and Scripps air
sampling programs, the data set includes new observations collected from ships in

the low-latitude Pacific. The data show a smaller interthemispheric APO gradient than was
observed in past studies, and different structure within the hemispheres. These differences
appear to be due primarily to real changes in the APO field over time. The data also
show a significant maximum in APO near the equator. Following the approach of Gruber
et al. (2001), we compare these observations with predictions of APO generated from
ocean O- and CO- flux fields and forward models of atmospheric transport. Our
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Panel 4: Annual mean APO values derived from seasonal cycles
—o— Data -© - Model
Panel 3: Annual mean APQ values derived from interpolation
Data: ¢ Land stations — Fitto all
Model: O Land stations - - - Fit to all
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...and many more recent,
excellent, papers



Our data collection didn’t end there...



Shipboard data
(NOAA ship Ka’imimo’ana)
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Shipboard data
(NOAA ship Ka’imimo’ana)
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Goals

 Characterize east-west structure of
APO across the Equatorial Pacific

 From this, learn about oceanic and
atmospheric processes



Challenges

e Likely a small signal
* Trend in APO
e Seasonal cycle in APO
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Challenges

Likely a small signal

Trend in APO

Seasonal cycle in APO

Sparse and irregular sampling
Missing locations of samples

Thanks to: Paul Freitag, Cathy Cosca, Brian Lake,
Wendy Bradfield-Smith



Approach #1: Intuition

(Jacob Forsyth)

e Detrend (CCGVU using KUM)
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Approach #1: Intuition

(Jacob Forsyth)

 Detrend (CCGVU using KUM)
* Find origin of air mass (HYSPLIT)



NOAA HYSPLIT MODEL NOAA HYSPLIT MODEL
Backward trajectory ending at 2000 UTC 03 Feb 03 Backward trajectory ending at 0800 UTC 03 Apr 01
CDC1 Meteorological Data 4 CDC1 Meteorological Data

e

400N 125.00 W
8.01 N 110.14 W

at

x
@
e
>3
o)

w

Source * at

Meters AGL
Meters AGL

1896082008 56082603 2608 60306030608 26082605060506050608 e ——
il O D g S 0BL00880X 060826082603960396032603260826082603260326030608260826
ot epdunpe ey ed (o e U Bhein t o, Ul a Vel Vi e PP Vs s 04/0304/0204/0103/3103/3003/2003/2803/2703/2603/2503/2403/2303/22




Approach #1: Intuition

(Jacob Forsyth)

e Detrend (CCGVU using KUM)
* Find origin of air mass (HYSPLIT)
e Subtract seasonal cycle (KUM or SMO)
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Approach #1: Intuition

(Jacob Forsyth)

Detrend (CCGVU using KUM)

Find origin of air mass (HYSPLIT)
Subtract seasonal cycle (KUM or SMO)
Average over time

Fit gradients with Butterworth filter
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Approach #1: Intuition

(Jacob Forsyth)

Detrend (CCGVU using KUM)

Find origin of air mass (HYSPLIT)
Subtract seasonal cycle (KUM or SMO)
Average over time

Fit gradients with Butterworth filter
Problems: Aliasing
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Approach #2: Model-guided

Use model to develop an analysis
protocol that gives the same gradients
for
sparse and full sampling.



Model details

Atmospheric transport: TM3

Annual Mean O, and N, fluxes: Ocean
inversion (Gloor et al., 2001, Gruber et
al., 2001)

Seasonal O, and N, (Garcia & Keeling
2001

CO, from oceans (Takahashi et al.,
2009);

CO, trom fossil fuels (CDIAC)

Modeling: Sara Mikaloft-Fletcher



Simplest starting point

Naive gradient calculation
(simple average over relevant lats & times)

APO (per meg)

—©— Full model output
: —¥— Sampled model
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Approach #2: Model-guided

e Detrend (CCGVU using KUM)



Approach #2: Model-guided

 Detrend (CCGVU using KUM)

e Zero each latitude band and combine
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Detrended and zeroed (by lat)

Naive gradient using detrended model output

—©— full model output
—¥— shipboard model only

&
()]

K
(@)}

14

=)
Q
=
&1
O
o
<

=&
N

—_
—

g
©

180 190 200 210 220 230 240
Longitude (for numbers>180, subtract 360))




Approach #2: Model-guided

 Detrend (CCGVU using KUM)

e Zero each latitude band and combine
e Subtract scaled seasonal cycle (KUM or

SMO) by latitude



Scale factors tor seasonal cycles

Full seasonal cycle at 160W, all time points
for various lats and SMO
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Approach #2: Model-guided

e Detrend (CCGVU using KUM)
e Zero each latitude band and combine
e Subtract scaled seasonal cycle (KUM or

SMO) by latitude

* Average over all times



Impact of deseasonalizing

Full model, no trend

Full model, no trend or season
=== Sparse model, no trend
=== Sparse model, no trend or season
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Data: fully processed

Data
(detrended, zeroed, deasonalized)

APO (per meq;
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Data-model comparison
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What determines the gradient?

(full model)
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Temporal dependence?

-8— All data
—&— E| Nino only
—&— L3 Nina only
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Temporal dependence?

—&— E| Nino only

—&— L3 Nina only
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Conclusions

Eqg. Pac. APO gradients are modest
Correcting for sparse sampling is hard
Model not obviously wrong

Model suggests any gradient is due to

seasonal O2 fluxes
Hints of ENSO dependence



Impact of the analysis

—&— detrended and zeroed

—&— detrended, zeroed, deseasonalized
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