Airborne Oxygen Measurements Over the Southern Ocean as an Integrated Constraint of Ocean Biogeochemical Processes

Jonathan Bent, NCAR (SIO) Measurements: Ralph Keeling (SIO), Britton Stephens (NCAR) Modelers: Sara Mikaloff Fletcher (NIWA), Prabir Patra (JAMSTEC)

Goals

- 1. Apply curtain average metric and see whether it reduces disagreement between transport model runs with same ocean fluxes.
- 2. How large is the seasonal cycle of the atmospheric column (curtain average) relative to surface observations?
- 3. How do models perform relative to observations with transport model uncertainty reduced?
- 4. How do Garcia and Keeling (2001) dissolved climatologies perform on amplitude and phase?

1. HIAPER Pole to Pole Observations

High-performance Instrumented Airborne Platform for Environmental Research

HIPPO: Coverage

SIO/NCAR Contribution

AO2

[Photos: J. Bent; Figure: B. Stephens]

(DA

O₂ and CO₂ Curtain Plots from HIPPO1

January 2009, Mid Austral Summer

[Figures: B. Stephens]

Palmer Station, Antarctica (PSA) Cape Grim Observatory, Tasmania (CGO) O_2 and CO_2 Records

PSA, CGO Atmospheric Potential Oxygen

Seasonal P2P ~ 70 per meg (~14.7 ppm) Interannual: 140/14=-10 per meg/yr

APO concentrations over the Southern Ocean Slice: AO2 and Medusa

Medusa Flasks from 45°-67°S

Modeling Methodology

TM3 (Sara Mikaloff Fletcher, NIWA)

NEMO-PISCES-T (LeQuéré, 2007) NEMO-CNTRL (Rodgers, 2014) NEMO-WSTIR (Rodgers, 2014)

MOM4 (Dunne, 2010)

CCSM3 (Collins, 2006) CESM (Long, 2013)

Dissolved Climatologies

ACTM

(Prabir Patra, JAMSTEC)

Dissolved Climatologies

 O_2 (Garcia and Keeling 2001), CO₂ (Takahashi 2009), N_2 (Blaine 2005) Wanninkhof (1992) Gas Exchange Velocity: $K_{av}=a_q u_{av}^2 (Sc/660)^{-0.5}$, where $a_q = 0.39$, the global gas exchange scaling factor

TRANSCOM models show improved agreement when averaged over the vertical column

using the same ocean fluxes agree much better.

•11

3. The Southern Ocean Curtain Average

Synoptic and spatial adjustments Station vs. HIPPO APO Curtain Average

Model Comparison

Monte Carlo Fit Error Assessment

1-Harm

2-Harm

Peak timing vs. Amplitude

 $K_{av}=a_q u_{av}^2 (Sc/660)^{-0.5}$ GK01, $a_q=0.39$ (~20% too large) Naegler '06, $a_q=0.32$

Conclusions: Curtain Average

- Curtain average overcomes vertical mixing uncertainty in atmospheric transport models
- Southern Ocean slice curtain average has a seasonal cycle of 43.8 (±5.3) per meg for 1-Harmonic fits with peak at YD67
- Curtain Average suggests atmospheric column seasonal cycle is about 70% as large as seasonal cycle at surface
- MOM4 and NEMO-CNTRL ocean models reproduce this most successfully
- Dissolved climatology runs suggest Garcia and Keeling (2001) O_2 fluxes are too large (~20%), and too early (~2 weeks)
- (GK01 shape seems too symmetrical—new analysis recommended with new scaling factor and 2001-2014 O₂ measurements.)

Measurements: Ralph Keeling Britt Stephens

Modelers: Sara Mikaloff Fletcher (TM3) Prabir Patra (ACTM) Keith Rogers, Olivier Aumont (NEMO) Corinne LeQuere (NEMO-PISCES-T) John Dunne (MOM4) Matt Long, Scott Doney, Ivan Lima (CCSM3, CESM)

Funding

HIPPO NSF grants:

ATM-0628575, ATM-0628519, ATM-0628388 ATM-0628452, and ATM-1036399

Interpretive work NSF grant_OCE-1130976

> <u>NOAA</u> <u>NCAR</u>