

Constraints on heat transport from atmospheric potential oxygen & implications for carbon

Laure Resplandy Scripps Institution of Oceanography

R. Keeling (Scripps); A. Jacobson (NOAA); B. Stephens, J. Bent (NCAR) S. Khatiwala (Oxford, UK); C. Rödenbeck (MPI, Germany)

Natural heat fluxes matter for climate

Larger heat loss in the North

ocean gains heat

Natural heat fluxes matter for climate

Position of Intertropical Convergence Zone (Marshall et al., Clim. Dyn. 2014; McGee et al., EPSL 2014; Schneider et al., Nature 2014...)

Annual precipitation maximum

Heat transport asymmetry introduced by Atlantic Ocean

Heat transport asymmetry introduced by Atlantic Ocean

Heat transport asymmetry (20°S-20°N)

Surface flux climatology Ocean sections Top of the atmosphere 0.8±0.3 PW 0.5±0.6 PW 0.1-0.6 PW CORE2 (Large and Yeager, 2009) (Ganachaud and Wunsch, 2003) (Trenberth and Caron, 2001; Fasullo and Trenberth, 2008)

-0.1/1.1 PW

Inert gas flux scales with heat flux

Atmospheric fingerprint of the ocean heat transport

The atmospheric column integrates ocean processes

Potential Oxygen tracks air-sea flux

Potential Oxygen tracks air-sea flux

Potential oxygen scales with ocean heat, like an inert gas (maybe even better...)

Airborne atmospheric potential oxygen data

B. Stephens, J. Bent (NCAR)1600 observations~500 hours of flight

Wofsy et al., 2011

Airborne atmospheric potential oxygen data

B. Stephens, J. Bent (NCAR) 1600 observations ~500 hours of flight

Wofsy et al., 2011

HIPPO

068ervation5

HIAPER Pole-to-Pole northern deficit ~ 10.5 per meg

Combine atmospheric and oceanic data to constrain ocean transport

ocean inversion (Gloor et al., 2001; Gruber et al., 2001; MikaloffFletcher 2007; Jacobson et al., 2007)

Ocean transport asymmetry is underestimated

Ocean transport asymmetry is underestimated

Ocean transport asymmetry is underestimated

Ocean transport asymmetry is underestimated What is wrong?

Data: Atlantic hydrographic sections

Ganachaud & Wunsch, 2003; Macdonald et al., 2003; Alvarez et al., 2003; Holfort et al., 1998; Lundberg & Haugan, 1996

- D 7 inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

Data: Atlantic hydrographic sections

Ganachaud & Wunsch, 2003; Macdonald et al., 2003; Alvarez et al., 2003; Holfort et al., 1998; Lundberg & Haugan, 1996

- D 7 inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

Data: Atlantic hydrographic sections

Ganachaud & Wunsch, 2003; Macdonald et al., 2003; Alvarez et al., 2003; Holfort et al., 1998; Lundberg & Haugan, 1996

- D 7 inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

Data: Atlantic hydrographic sections

Ganachaud & Wunsch, 2003; Macdonald et al., 2003; Alvarez et al., 2003; Holfort et al., 1998; Lundberg & Haugan, 1996

- D 7 inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

Models

- **7** ocean inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

- **7** ocean inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

- **7** ocean inversions
- 6 climate models (CMIP5)
- X 2 ocean models (CESM, IPSL)

- 7 ocean inversions
- 6 climate models (CMIP5)
- 2 ocean models (CESM, IPSL) Χ

Mikaloff Fletcher et al., 2007;

Gerber et al., 2010; Takahashi et al., 2009

Discussion and prospects

- Potential oxygen is a valuable new constraint on heat transport $0.5-1 PW \ge hydrographic data and consistent with surface flux.$
- Atmospheric data supports strong asymmetry in natural carbon
 0.2-0.8 PgC/y ≥ ocean priors used in atmospheric inversions
- Ocean/climate models underestimate heat and carbon transports
- Impacts on carbon sinks attribution & future climate projections...?

