Temporal variations of $\delta(O_2/N_2)$ and Atmospheric Potential Oxygen (APO) observed at Syowa Station, Antarctica.

Shinji Morimoto^{*1,2}, Daisuke Goto², Shigeyuki Ishidoya³, Prabir K. Patra^{1,4}, Shuji Aoki¹, Takakiyo Nakazawa¹

¹ Tohoku Univ., Sendai Japan (TU)

- ² National Institute of Polar Research (NIPR)
- ³ National Institute of Advanced Industrial Science and Technology (AIST)
- ⁴ Japan Agency for Marine-earth Science and Technology (JAMSTEC)

Outline

- Measurement sites by Tohoku U. and NIPR
- Continuous measurement system of $\delta(O_2/N_2)$
- Seasonal variations of APO at Syowa Station
- Synoptic scale variations of $\delta(O_2/N_2)$ and CO_2

O₂ observation sites of TU & NIPR

Latitude

Syowa Station (SYO), Antarctica (69°S, 39.6°E)

CO_2 and $\delta(O_2/N_2)$ variations observed at Syowa

YEAR

$\delta(O_2/N_2)$ measurement system at Syowa Station

Analyzer	Oxizilla-II (Fuel Cell)
Calibration	TU scale (Ishidoya et al., 2003)
Reproducibility	2.5 per meg (1 sigma)

Comparison with Princeton and SIO data

Scripps data were downloaded from the SIO website (Aug., 2015)

Temporal variations of CO_2 , $\delta(O_2/N_2)$ and APO

Simulation of APO and $\delta(O_2/N_2)$ by ACTM (Atmospheric General Circulation Model-based Chemistry Transport Model) (Patra et al., 2009)

	Data set used in this model simulation
Transport Model	CCSR/NIES/FRCGC AGCM5.7b
$\begin{array}{c} \textbf{Ocean fluxes} \\ \textbf{O}_2 \& \textbf{N}_2 \\ \textbf{CO}_2 \end{array}$	Garcia & Keeling, 2001; Blaine, Ph. D. Thesis Inversion ACTM (Patra et al., 2011)
Terrestrial fluxes O ₂ CO ₂	[Terrestrial CO_2] * (-1.1) Inversion ACTM (Patra et al., 2011)
Fossil fuel fluxes	EDGAR 4.2, scaled to CDIAC global totals
Transp Fluxes	ort : variable : monthly, cyclic (no interannual variatic

Seasonal variations of APO

Degree of fluctuation ={ (each year's amplitude) - (average) } / (average)

Seasonal variations of APO

Comparison with:

Oceanic NPP http://www.science.oregonstate.edu/ ocean.productivity/

Wind Speed NCEP/DOE reanalysis2 data

Sea Ice area SSM/I and SSMIS compiled by JMA

Ocean Mixed Layer Depth ARGO buoy data -- too sparse

Sea Surface Temperature NOAA/NCDC ERSSTv.4 Anomaly from 1970-2000 average 30S – 60S May-Nov. 30S – 60S Jul.-Nov.

Synoptic scale variations of CO₂ and δ (O₂/N₂)

= (hourly mean data) – (best fit curve)

Remarkable short-term variations were observed in austral summer.

Synoptic scale variations of CO_2 and $\delta(O_2/N_2)$

 CO_2 -depleted and O_2 -rich air-mass came from eastern ocean of South America Slope of the regression line = 5.4 ppm/ppm > 1.1

The CO_2 and O_2 variations reflected oceanic fluxes.

Comparison with numerical experiments by ACTM

Comparison with ACTM simulations with oceanic O₂ and N₂ fluxes

Comparison with ACTM simulations with oceanic O_2 and N_2 fluxes (tagged tracer experiment)

Summary

- Continuous $\delta(O_2/N_2)$ measurement at Syowa Station well captures seasonal and shorter time scale variations.
- Year-to-year variations of seasonal APO cycles were observed. At this stage, correlation with sea surface temperature was found.
- Synoptic scale variations in CO_2 and $\delta(O_2/N_2)$ were observed in austral summer. They could be produced by oceanic fluxes.
- ACTM simulation well reproduced the synoptic $\delta(O_2/N_2)$ variation using climatological O_2 and N_2 fluxes. The synoptic variation at Syowa Station can detect interannual variations of oceanic fluxes in the 'western' part of the Southern Ocean.