

Can O_2/N_2 measurements help to constrain global total fossil fuel emission?

Prabir Patra (JAMSTEC), Rona Thompson (NILU), Tazu Saeki (JAMSTEC) and potential collaborators

2nd Decadal APO meeting San Diego, 18 Sept 2015

Background: Synthesis of Land fluxes from TDIs and DGVMs

Unfair to compare inversion fluxes (include all CO₂ component) with the DGVMs (dynamic vegetation models)

Why is the Asia (temperate and boreal) regions so large?

> Figure 6.15, IPCC-AR5-WG1, plot by P. Patra

Objective: To develop a grand synthesis of the net GHG (CO₂, CH₄,

N₂O, black carbon and carbon monoxide) balance of Asia, excluding Siberia, using bottom-up and topdown constraints and estimates covering the 2000-2012 period.

References:

3rd APN workshop at JAMSTEC, Yokohama, 8-10 April 2014 TransCom meeting in Groningen University, 24-26 June 2014 Asian GAW meeting, KRISS, Daejeong, 20-22 October 2014 4th APN/NIES workshop at JAMSTEC, Yokohama, 2-4 March 2015

Top-down constraints – expected models

~
~

- 1. WUR, JRC, NOAA
- 2. MPI-BGC
- 3. Univ. of Edinburgh
- 4. LSCE and NILU (N2O)
- 5. JAMSTEC
- 6. NIES

- 7. MRI JMA
- 8. NILU
- 9. MRI/U. Toronto
- 10. JAMSTEC
- 11. Emory Univ.
- 12. Univ. Chile

✓: Longterm, 2000-2012
✓: focussed, 2010-2012

Top-down Asian CO₂ budget using 3 different (adjusted a posteriori) fossil fuel inventories

(Thompson et al., in review)

Global total fossil fuel (FF) emissions

GEO & IEA maps: courtesy of Ingrid van der Laan-Luijkx

East Asian (China, Japan, Korea) FF emissions

Year

East Asian land flux for different FF emissions

84 region CO₂ inversions using ACTM: courtesy of Tazu Saeki

Year

Inversions by T. Saeki

In search of independent evidence

53-Regions (land only) Inverse Model for CH₄ at JAMSTEC

 $S = S_0 + (G^T C_D^{-1} G + C_{S_0}^{-1})^{-1} G^T C_D^{-1} (D - D_{ACTM})$

S₀ = regional prior sources

 C_{so} = Prior source covariance = 70% of region-total emission for each month

D = atmospheric concentration data

Data covariance $C_D = 5$ ppb for measurements + scaled RSD for model uncertainty

 D_{ACTM} = ACTM simulation using S₀

G = Green's functions for regional source-receptor relationships

Net CH₄ emissions for 6 a priori cases (top) and modelled loss rates (bottom)

Soil sink: VISIT

For Prior CH₄ emission cases (top panel), only one of emission type has trend, except for E42.

More on CH₄ inversion – trends and interannual variability

China FF emissions – new inventory

Liu et al., Nature, 20 Aug 2015

Independent constraints for global FF CO₂?

- APO since oxygen is consumed at certain ratios during FF burning
 - Some of the FF (coal) signal is not distinct
 - Regional flux constraint using continuous measurements downwind
- $\delta^{13}C$: not only dependent on FF emissions
- $\Delta^{14}C$: seems the most independent so far
- Others

Estimation of Fossil Fuel Source Using O2/N2 and CO2 (ver: 20 April 2015)

Assuming: O2:CO2 for fossil fuel O2:CO2 for land exchange Z(O2) for ocean outgassing

CDIAC (account for cement separately)

fossil	cement	land	ocean
7.64	0.33	0.84	3.05
6.47	0.23	0.07	2.85
7.56	0.31	0.54	3.13
8.73	0.43	1.85	3.19

EA (a	account for	cement	separately)
ossil	cement	land	ocean	
7 20	0 2 2	052	2 1 1	

1.59	0.55	0.52	5.11
6.29	0.23	-0.16	2.9
7.34	0.31	0.27	3.18
8.29	0.43	1.3	3.3

APO at SIO surface sites

Summary

- We are trying to estimate CO₂ fluxes from 3 Asia regions, and understand source of uncertainties
 - Transport: using multimodel
 - Prior fossil fuel emissions: using multiple inventory emissions
- Assumption of fossil fuel emissions influence the absolute and trends in inversion fluxes
- CH₄ inversion suggest a much slower increase in emissions from Chinese coal industry (This study, Tohjima et al., Thompson et al.)
- Independent check on global and regional fossil fuel emissions is needed using related chemical tracers
 - Impact on NH-SH APO gradient?