
APO meeting 2020

erc

Measuring oxygen fluxes in a European beech forest - results from the OXYFLUX project

Alexander Knohl¹, Jan Muhr¹, M. Julian Deventer¹, Emanuel Blei¹, Jelka Braden-Behrens¹, Edgar Tunsch¹, Mattia Bonazza¹, Penelope A. Pickers², David D. Nelson³, Mark S. Zahniser³, and Andrew C. Manning²

¹Bioclimatology – Georg-August University Göttingen; DE ²University of East Anglia, Norwich, UK ³Aerodyne Research, Inc., Billerica, USA

O₂ fluxes in a forest ecosystem

Overall objective

Understanding the O₂:CO₂ ratio of gas exchange of a forest ecosystem in Germany

Approaches

- 1. Custom-made fully automated chamber branches, stems and soils
- 2. Canopy air profile measurements and Inverse Lagrangian modelling
- 3. Oxidative ratios from organic material
- 4. Ecosystem modelling

1. Chambers for ecosystem component measurements

Component fluxes

- Branch
- Stem
- Soil
- ➔ 4 chambers each

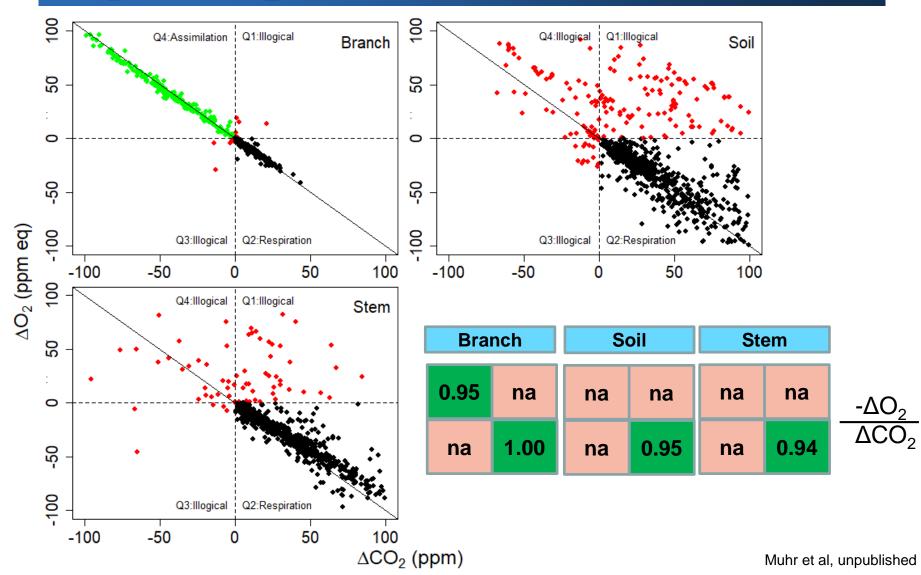
Non-measurement mode Chamber concentrations are kept at constant level close to <u>ambient</u> <u>concentration</u> in between measurements

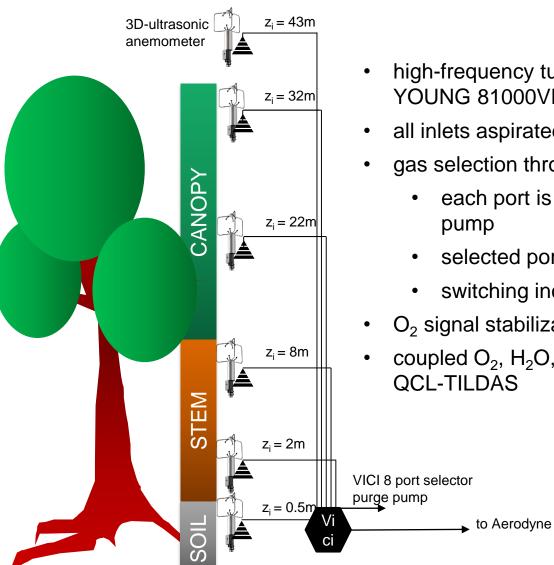
Known carrier gas

Soil chambers

Measurement mode

Chambers are measured oneby-one


Gas of known concentration is pumped through the chamber and concentration changes $(\Delta O_2, \Delta CO_2)$ are measured \rightarrow Open throughflow steady state

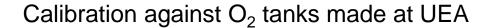


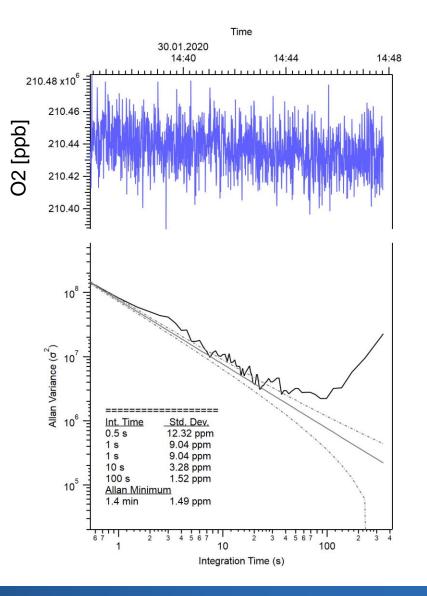
Analyzer unit for O₂ and CO₂ Precision: 1 ppm O₂ 0.5 ppm CO₂ built by UEA

$\Delta O_2 \sim \Delta CO_2$ by chamber location

2. Canopy profile

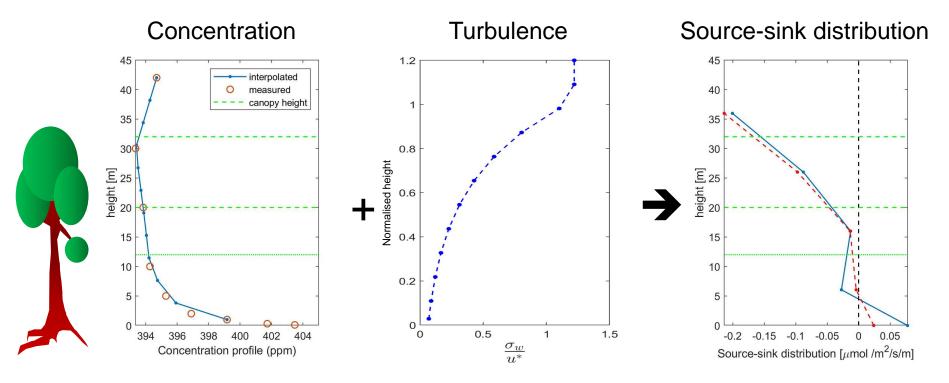
- high-frequency turbulence profile measurements with YOUNG 81000VRE
- all inlets aspirated Stevenson huts
- gas selection through constant flow VICI 8 port valve
 - each port is continuously sampled @ 1slpm by purge
 - selected port is sampled @ 1slpm by vacuum pump
 - switching increment 5 min
- O_2 signal stabilization in < 1 min
- coupled O₂, H₂O, CO₂ measurements @ 2Hz in Aerodyne

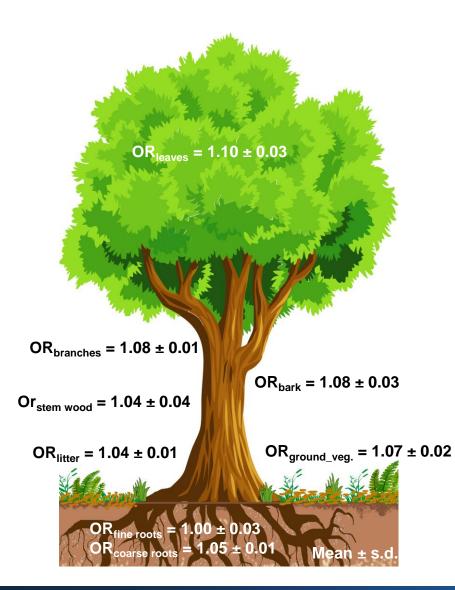

Aerodyne O₂ instrument performance


At 1 s integration:

precision of 9 ppm O₂ (43 per meg)

At 100 s integration:

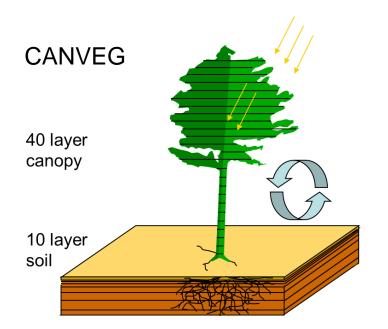

precision of 1.5 ppm O₂ (7 per meg)



Inverse lagrangian modelling

- > Use measured O_2 and CO_2 concentration profile C(z)
- > and turbulence $u_*(z)$ profile
- \blacktriangleright to infer vertical source /sink distribution profile S(z) of O₂ and CO₂ inside canopy
- > and integrated to get canopy net O_2 and CO_2 exchange.

3. Oxidative ratios of organic material



Oxidative ratio of organic material reflects the long-term O_2/CO_2 ratio based on the chemical composition of organic material

- Most oxidative ratios within this one forest are between 1 and 1.1
- Litter and fine & coarse roots are lower compared to fresh leaves and branches, or bark
- Temporal variation only in leaves
- No significant height effect on oxidative ratios in leaves

4. Ecosystem modelling

- Implementing O₂ fluxes in the multilayer canopy model CANVEG
- Validating against chamber and profile measurements

Without N assimilation effects (Farquhar et al. 1980):

all electrons from water split are used to reduce CO_2 to glucose:

• $6CO_2 + 6H_2O = C_6H_{12}O_6 + 6O_2$

•
$$O_2 = CO_2 = min\{W_c, W_j\}\left(1 - \frac{I^*}{[C_i]}\right) - R_c$$

→ O₂:CO₂ = 1.0

With N assimilation effects (Busch et al. 2017):

Extra electron for NO_3^- reduction to NH_4^+ (e_{nit}^-) are provided by water split reaction:

- $\begin{cases} NO_3^- + 2e_{nit}^- + 2H^+ = NO_2^- + H_2O \\ NO_2^- + 6e_{nit}^- + 8H^+ = NH_4^+ + 2H_2O \\ H_2O = 2e_{nit}^- + 2H^+ + 0.5O_{2_{nit}} \end{cases}$
- $O_2 = CO_2 + O_{2_{nit}}$

Yuan et al, unpublished

Established by the European Commission

Follow us!

@BioclimGoe Bioclimatology Group at University of Göttingen

Funding

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 682512 - OXYFLUX)