APO2020 Virtual Workshop

Research activities for O₂/N₂ and Ar/N₂ in National Institute of Advanced Industrial Science and Technology (AIST)

Shigeyuki Ishidoya Nobuyuki Aoki and co-authors AIST research activities for O_2/N_2 and Ar/N_2

Observations (PI: Shigeyuki Ishidoya)

Gravimetric standard air (PI: Nobuyuki Aoki)

In this presentation, we introduce the observational programs quickly, and then discuss the round-robin experiments using the developed gravimetric standard air for O_2/N_2 (Aoki et el., in preparation)

Observations of O₂/N₂ and Ar/N₂

Surface stations:

background sites, urban area of Tokyo and Tsukuba, and a forest site

Collaborations with Meteorological Research Institute of Japan (MRI), Japan Meteorological Agency (JMA), National Institute for Environmental Studies (NIES), National Institute of Polar Research (NIPR), National Defense Academy of Japan (NDA), Tokai Univ. and Gifu Univ.

Aircrafts: C130H and CRJ over Japan

Collaborations with MRI, JMA and Tohoku Univ. (TU)

Scientific Balloon:

Stratosphere over Japan, Antarctica, Arctic and the equatorial region

Collaborations with Miyagi Univ. of Edu. (MUE), TU, Tokyo Univ. of Tech. (Tokyo Tech), Hokkaido Univ. (HU) and JAXA

Surface background stations and aircrafts:

0

-50

-150

-200

-250

-300

150

100

50

-50

-100

-150

bs/station/station minamitorishima.html

APO (per meg)

 $\delta(O_2/N_2)$ (per meg)

Continuous and flask observations of O_2/N_2 , collaborations with MRI, JMA and TU

Updated from Ishidoya et al. (2017 SOLA), Ishidoya et al. (in preparation)

Updated from Ishidoya et al. (2014 SOLA), Ishiodya et al. (in preparation)

upper tropospheric air sample onboard CRJ since 2019 (not shown).

Objectives: Global CO₂ budget, air-sea O₂ flux and atmospheric transport processes

Surface urban stations and a forest station

Continuous and flask observations of O_2/N_2 , collaborations with NDA, Tokai Univ. and Gifu Univ.

Objectives: Oxidative Ratio for the net turbulent flux, and CO₂ budget in a megacity and forest

Surface stations and scientific balloon :

Flask observations of Ar/N₂, collaborations with MUE, NIES, TU, NIPR, MRI, Tokyo Tech, HU, and JAXA

Objectives: OHC and Brewer-Dobson circulation (BDC) changes

2017

2018 2019 2020

2012 2013 2014 2015

To achieve the research objectives, it is vitally important to prepare precise and reproducible standard air for O_2/N_2 and Ar/N_2 .

In the following, Nobuyuki Aoki-san will present results of the round-robin experiments using the gravimetric standard air for O_2/N_2 developed by Aoki et al. (2019). (Aoki et el., in preparation)

Development of gravimetric standard gases

We improved measurement precision of cylinder mass by measuring after eliminating difference in temperature between sample cylinder and reference cylinder.

Changes in mass readings of sample cylinders after evacuation of the cylinder and filling of source gases (Aoki et al. 2019, AMT).

Changes in the mass readings observed for sample cylinders plotted against temperature differences (Aoki et al. 2019, AMT).

The change amount of weight difference between both cylinders depend on their temperature difference because only temperature of a sample cylinder changes in preparation process.

Development of gravimetric standard gases

We were successful to develop high-precision oxygen standard gases with less than 5 per meg standard uncertainty by measuring isotopic composition of source gases and cylinder mass precisely and accurately.

Repeatability of mass readings obtained for the sample (Aoki et al. 2019, AMT).

lsotopic composition	and atomic masses	of pure O ₂	and N ₂
----------------------	-------------------	------------------------	--------------------

lastens	Atomic mass		Isotope abundance			
Isotope			Atmosphere		Source gas	
¹⁴ N	14.0030740074(18)		0.996337(4)		0.996346(4)	
¹⁵ N	15.000108973(12)		0.003663(4)		0.003654(4)	
¹⁶ O	15.9949146223(25)		0.9975684(9)		0.9975887(9)	
¹⁷ O	16.99913150(22)		0.0003836(8)		0.0003818(8)	
¹⁸ O	17.999	1604(9)	0.0020481(5)		0.0020295(5)	
Sources Atomic mass		Atomic mass of	f nitrogen	Atomic mass of oxygen		
Atmosphere 1		14.006726(4)		15.999405(1)		
Source gases 14.006717(4)		15.999366(1)		9366(1)		

Relationship between $\delta(O_2/N_2)_{HPO_grav}$ and $\delta(Ar/N_2)_{HPO_meas}$ (upper). Fitting residuals are likewise shown (lower) (Aoki et al. 2019, AMT)

Outline of the round-robin experiment

Comparison of each O_2/N_2 scale was carried out between four laboratories: AIST, NIES, Tohoku University, SIO. Each laboratory analyzed the five gravimetric standard gases prepared by NMIJ/AIST and reported $\delta(O_2/N_2)$ values on own scales to NMIJ/AIST.

Constituent	EMRI/AIST	NIES	TU	SIO
Analysis period	May–July, 2017	SepNov., 2017	Dec., 2017–Jan., 2018	May–Nov., 2018
Measurement technique	Mass spectrometry	Gas chromatography	Mass spectrometry	Interferometric method
Measurement species	¹⁴ N ¹⁴ N, ¹⁵ N ¹⁴ N, ¹⁶ O ¹⁶ O, ¹⁷ O ¹⁶ O, ¹⁸ O ¹⁶ O	O ₂ , N ₂ , Ar	¹⁶ O ¹⁶ O, ¹⁴ N ¹⁵ N	O ₂ (Interferometer) ⁴⁰ Ar, ¹⁴ N ¹⁴ N (mass spectrometer)
Reported values	δ(¹⁶ O ¹⁶ O / ¹⁴ N ¹⁴ N)	δ(O ₂ /N ₂)	δ(¹⁶ O ¹⁶ O / ¹⁵ N ¹⁴ N) ^a	δ(O ₂ /N ₂)

Composition: Standard uncertainty :

N₂, O₂, Ar, CO₂ Comparison range: -4000 per meg to 2000 per meg 3.3 per meg to 4.0 per meg

Gravimetric $\delta(O_2/N_2)$ values were calculated against the O_2/N_2 ratio in the atmosphere (0.20946/0.78084=0.26825) (Machta and Hughes, 1970).

Stability of $\delta(O_2/N_2)$ during the round-robin experiment

The $\delta(O_2/N_2)$ values decreased slightly with time in all cylinders, especially for the cylinder no. CPB16379.The average decreasing rate of the $\delta(O_2/N_2)$ values in the cylinders except the CPB16379 was -3.2 ± 1.1 per meg yr⁻¹, while that of the CPB16379 cylinder was -6.7 ± 2.1 per meg yr⁻¹.

To correct the temporal drifts during the round-robin experiment, we linearly interpolated the gravimetric $\delta(O_2/N_2)$ value of the date analyzed by individual laboratories using the temporal drift values before and after analysis of individual laboratories

Difference between each span sensitivity

A Deming least square fits was applied to the individual laboratory's values. The deviations from 1 for the slopes of the lines represent the differences from the span sensitivity of the NMIJ/AIST scale, which were in range from -0.17% to 3.3%.

<u>Compatibility of the atmospheric $\delta(O_2/N_2)$ data between AIST and NIES</u>

We compared the O_2/N_2 ratios measured by AIST and NIES based on flask samples collected at HAT from October, 2015 to December, 2019 (Tohjima et al., 2008), to confirm compatibility of AIST and NIES data after conversion to the NMIJ/AIST scale. The values of NIES after March, 2018 are preliminary data.

Conversion equation	to the	e NMIJ/AIST scale	<u>)</u>
$\delta(0_2/N_2)_{\rm NMIJ/AIST} =$	a _{AIST}	$\cdot \delta(0_2/N_2)_{AIST} +$	b _{AIST}
$\delta(O_2/N_2)_{\rm NMIJ/AIST} =$	a _{NIES}	$\cdot \delta(O_2/N_2)_{NIES}$ +	- b _{NIES}
	Slope	, Ir	itercept

This scale conversion reduced the bias between $\delta(O_2/N_2)$ values of AIST and NIES to 6.6 ± 6.8 per meg. The bias dropped within the uncertainty which represents standard deviation of the differences.

Comparison of Hateruma samples measured by AIST and NIES

We confirm compatibility between span sensitivities on the AIST scale and the NIES scale using scatter plots. The lines represent a Deming least square fit applied to the scatter plots.

The slope of the line before scale conversion and its standard deviation is 0.956 ± 0.015 , which consisted with the difference of the span sensitivity between both scales (0.9983/1.0329= 0.967) within uncertainty. The slope after the scale conversion and its standard deviation is 0.990 ± 0.015 , identifying that the difference in span sensitivity between AIST and NIES scales was corrected by the scale conversion to the NMIJ/AIST scales.

<u>Reproducibility of O_2/N_2 scale</u>

Reproducibility of NMIJ/AIST scale was also evaluated using nine high-precision standard mixtures prepared in different period (from April, 2017 to February, 2020).

All residuals were within the expanded uncertainties, suggesting that NMIJ/AIST scale will be reproduced by preparing the high-precision oxygen standard mixtures.