

Andrew Manning Penelope Pickers Leigh Fleming Marica Hewitt Nico Mayot Corinne Le Quéré

50 YEARS OF ENVIRONMENTAL SCIENCES University of East Anglia Norwich, United Kingdom

School of Environmental Sciences

- Maximum peak-to-peak drift over 24 hours, with 1 hour averaging: ~5.8 per meg.
- Water correction function is not good enough, Picarro are investigating this.
- Based on TT results with full drying, repeatability: ± 11.66 \pm 2.87 per meg; compatibility: 9.97 \pm 6.71 per meg.

Target Tank results:

SONATA The Cap San Lorenzo container ship

In situ measurements of atmospheric O₂ and CO₂ reveal an unexpected O₂ signal over the tropical Atlantic Ocean

Penelope A. Pickers¹ (D), Andrew C. Manning¹ (D), William T. Sturges¹, Corinne Le Quéré² (D), Sara E. Mikaloff Fletcher³ (D), Philip A. Wilson¹ (D), and Alex J. Etchells¹

- Pickers et al., GBC, 2017.
- Black our observations (2015-2017 mean).
- Red TM3 transport model results .
- Green Pacific equivalent (observations; Tohjima et al., 2015).
- Technical and logistical issues in latter years, including covid-19.

¹⁴C- and APO-derived ffCO₂ in Heidelberg

 $ffCO_2(APO) = \frac{APO_{measured} - APO_{background}}{APO_{background}}$ \overline{R}_{APO}

where R_{APO} is the APO:CO₂ ratio for fossil fuel combustion.

Challenging station! V. hetererogenous local fossil fuel sources, and complex topography and micro-meteorology.

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- R_{APO} shows high variability because of proximity to local sources. ¹⁴C-calibrated ratios in agreement with TNO database, but not with COFFEE database.
- When using an accurate mean R_{APO} value, there is no inherent bias between ¹⁴CO₂ and APO-based ffCO₂ estimates. APO is not as precise as ¹⁴CO₂ (because of R_{APO}-related variability), but it is accurate overall and provides continuous (hourly $ffCO_2$ estimates).

DARE-UK Upcoming in 2020-2021: ¹⁴C- and APO-derived ffCO₂ at the Heathfield tall tower

- Continuous O₂ and CO₂ installation in autumn 2020; ¹⁴CO₂ flask sampler installation in early 2021.
- More remote from local ffCO₂ sources than Heidelberg, so we anticipate less R_{APO} variability, and therefore more precise ffCO₂ estimates.

Crude summary of all results, 2003-2014

- O₂ community suffers from lack of a WMO Central Calibration Laboratory.
- GOLLUM goes a small way to addressing this lack, via repeated intercomparisons of 6 high-pressure cylinders by all participating O₂ laboratories.
- Program halted at end of 2014 owing to empty cylinders.
- About to restart, thanks to new cylinders from Scripps.