







John B. Miller, NOAA Global Monitoring Laboratory

## Outline

### 1. <sup>14</sup>C

- 1. Background
- 2. Signals in the data
- 3. Global inverse modeling
- 4. Urban

### 2. <sup>13</sup>C

- 1. Evolution of use
- 2. Region signals
- 3. Global signals



## Radiocarbon basics

- <sup>14</sup>C is produced in the upper atmosphere and oxidized to CO<sub>2</sub> which is incorporated into the atmosphere-land-ocean system.
- Fossil fuels have no <sup>14</sup>C, because its half-life is ~6000 yrs. This makes <sup>14</sup>CO<sub>2</sub> an ideal tracer for fossil CO<sub>2</sub>.
- As with stable isotopes, we report <sup>14</sup>C abundance (~10<sup>-12</sup> of CO<sub>2</sub>) using "delta" notation:

$$\Delta \approx \left(\frac{R_{sample}}{R_{standard}} - 1\right) \times 1000 \%$$

 $\rightarrow$  as Delta decreases, <sup>14</sup>C:C decreases, indicating more fossil

## Why Top-Down <sup>14</sup>CO<sub>2</sub>? Significant spread in national inventories.



Pengfei Han<sup>1</sup>, Ning Zeng<sup>2</sup>, Tom Oda<sup>3</sup>, Xiaohui Lin<sup>4</sup>, Monica Crippa<sup>5</sup>, Dabo Guan<sup>6,7</sup>, Greet Janssens-Maenhout<sup>5</sup>, Xiaolin Ma<sup>8</sup>, Zhu Liu<sup>6,9</sup>, Yuli Shan<sup>10</sup>, Shu Tao<sup>11</sup>, Haikun Wang<sup>8</sup>, Rong Wang<sup>11,12</sup>, Lin Wu<sup>4</sup>, Xiao Yun<sup>11</sup>, Qiang Zhang<sup>13</sup>, Fang Zhao<sup>14</sup>, and Bo Zheng<sup>15</sup>

## Measurement sites are global but mainly in North America



- ~ 1000 measurements per year.
- US sites  $1 3 \times per$  week.
- Most from U.S. tall towers (NOAA)
- Also aircraft sites
- Many global background sites from U. Heidelberg.

 $\Delta^{14}$ C and CO<sub>2</sub> variations over U.S. are dominated by biology and fossil emissions, respectively



# $\Delta^{14}$ C can separate fossil and biological components of continental CO<sub>2</sub>



Forward model comparisons with data gives confidence ahead of inversion: 1) large scale lat. gradient



→ Model includes all  $\Delta^{14}$ C budget terms: *Fossil,* cosmogenic and nuclear reactor production, *land and ocean disequilibrium* 

### US top-down fossil emissions for 2010 and 2015



# Top-down estimates show reductions consistent with US EPA (bottom-up)



Nazrul Islam

## LA Megacity <sup>14</sup>C sampling

- 1. Quantify fossil ( $C_{ff}$ ) and biospheric ( $C_{bio}$ ) contributions to  $CO_2$  enhancements ( $C_{xs}$ )
- 2015 sampling showed that C<sub>bio</sub> seasonality was correlated with urban water use (PNAS, 2020).
- 3. Use C<sub>ff</sub> to evaluate urban bottom-up fossil flux estimates.

#### LA Megacity GHG Network



### Significant C<sub>bio</sub> during SUNVEX-LA 2021



#### August 2021

## Atmospheric <sup>13</sup>CO<sub>2</sub> in transition...



**Global Land/Ocean Partitioning** 

Terre

**Terrestrial Biosphere Processes** 

# CO<sub>2</sub> and <sup>13</sup>C:<sup>12</sup>C are strongly connected via plant photosynthesis.

LEF tall tower, northern Wisconsin

Midwest: LEF, WBI influenced by maize ( $C_4$ ) East: SCT, AMT influence more by  $C_3$ 



# Global mean $\delta^{13}$ C shows that much of CO<sub>2</sub> variability originates in the terrestrial biosphere.



## Why is the $\delta^{13}$ C growth rate not trending?

$$C_{a}\frac{d\delta_{a}}{dt} = F_{f}(\delta_{f} - \delta_{a}) + F_{netb}\varepsilon_{ab} + F_{neto}\varepsilon_{ao} + F_{ba}(\delta_{b} - \delta_{a}) + F_{oa}(\delta_{o} - \delta_{a})$$

Over the last 30 years:

- 1. Fossil isoflux has decreased from ~ 120 to 200 PgC\*(per mil)/yr
- Isotopic disequilibrium has increased over the same period from ~ 80 to 140 PgC\*(per mil)/yr
- 3. What does this mean?

Diseqflux ∝ GrossFlux\*reservoir\_residence\_time

→Some combination of gross fluxes (e.g. respiration) and/or residence times in the surface waters or terrestrial biosphere have been changing a lot!
→Our bottom-up calculations explain ~85% of this change (but our bottom-up absolute values are too low.)

# <sup>13</sup>CO<sub>2</sub> inversions can improve the drought response of land models.



#### Recently developed SiB4 (land model)

