GOLLUM

Global Oxygen Laboratories Link Ultra-precise Measurements

Alternative acronyms considered in 2003

ATmospheric OXygen InterComparison programme (A TOXIC programme)

ATmospheric Oxygen Measurements InterComparison programme (ATOMIC programme)

INTERcomparisons For Experimenters Recording Oxygen Measurements Enabling Tremendously Exciting Research

(INTERFEROMETER)

Keep Every Experimenter Linked and Intercompared in a Networking Group (KEELING)

Results from the "GOLLUM" O₂ intercomparison programme

(Global Oxygen Laboratories Link Ultra-precise Measurements)

Andrew C. Manning¹, Marica Hewitt¹, Alex J. Etchells¹, Mai Hong¹, Penelope A. Pickers¹, Karina E. Adcock¹, R. F. Keeling², Eric Morgan², Shigeyuki Ishidoya³, Nobuyuki Aoki³, Yasunori Tohjima⁴, Heiko Moossen⁵, Daisuke Goto⁶, Shinji Morimoto⁷, Markus Eritt⁸, Gordon Brailsford⁹, Sylvia Nichol⁹, Harro Meijer¹⁰, Ingrid Luijkx¹¹, Kim Faassen¹¹, Britt Stephens¹², Markus Leuenberger¹³

School of Environmental Sciences Carbon Related Atmospheric Measurement Lab

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Results from the "GOLLUM" O₂ intercomparison programme

(Global Oxygen Laboratories Link Ultra-precise Measurements)

Andrew C. Manning¹, Marica Hewitt¹, Alex J. Etchells¹, Mai Hong¹, Penelope A. Pickers¹, Karina E. Adcock¹, R. F. Keeling², Eric Morgan², Shigeyuki Ishidoya³, Nobuyuki Aoki³, Yasunori Tohjima⁴, Heiko Moossen⁵, Daisuke Goto⁶, Shinji Morimoto⁷, Markus Eritt⁸, Gordon Brailsford⁹, Sylvia Nichol⁹, Harro Meijer¹⁰, Ingrid Luijkx¹¹, Kim Faassen¹¹, Britt Stephens¹², Markus Leuenberger¹³

School of Environmental Sciences Carbon Related Atmospheric Measurement Lab

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Affiliations

1 = UEA: Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK

2 = SIO: Scripps Institution of Oceanography, University of California, San Diego, California, USA

3 = AIST: Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Japan

4 = NIES: National Institute for Environmental Studies, Ibaraki, Japan

5 = MPI-BGC: Stable Isotope Laboratory (BGC-IsoLab), Max Planck Institute for Biogeochemistry, Germany

6 = National Institute of Polar Research, Tokyo, Japan

7 = TU: Tohoku University, Sendai, Japan

8 = ICOS: ICOS, Flask and Calibration Laboratory, Technologie Center Felsenkeller (TCF), Germany

9 = NIWA: National Institute for Water and Atmospheric Research, Wellington, New Zealand

10 = CIO-RUG: Centre for Isotope Research, Energy Academy Europe, University of Groningen, The Netherlands

11 = University and Research, Meteorology and Air Quality, The Netherlands

12 = NCAR: National Center for Atmospheric Research, Boulder, Colorado, USA

13 = UBERN : University of Bern

Talk outline

- Introduction and historical background
- Details of the GOLLUM programme
- Submitting data
- Viewing data live
- Provisional results:
 - 2021-2023
 - 2004-2014
 - Coping with seemingly drifting cylinders
- Other O₂ intercomparison programmes
- Future outlook: suggestions and plans

Introduction

- There is no official WMO calibration scale for O_2/N_2 measurements
 - Mostly because of a lack of resources (money, people, time) for anyone to maintain such a scale
- Many (but not all) labs are <u>unofficially</u> on the "Scripps O₂ scale"

- But "Scripps O₂ scale" means different things for different labs
- There are no established protocols for maintaining one's links to this scale
- As a result, combining atmospheric O₂/N₂ datasets from different labs is problematic, and even impossible
 - This stymies scientific progress and collaboration
- The GOLLUM programme was initiated in 2003 (by Andrew Manning and Ralph Keeling) to <u>start</u> to address these deficiencies
 - Following agreement at the GGMT-2003 meeting in Toronto, Canada

WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH

No. 148

Report of the Eleventh WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques

(Tokyo, Japan, 25 – 28 September 2001)

3) O₂/N₂ CALIBRATION

Intercalibration activities be undertaken to improve the usefulness of O₂/N₂ measurements, which are now being conducted by a growing number of laboratories world-wide. At present, there are no absolute standards for atmospheric O₂/N₂ ratio, and each laboratory has reported results relative to individual laboratory reference gases. The scientific value of O₂/N₂ measurements would be largely enhanced if measures were taken to bring the observations onto a common scale, with a precision of a few per meg, and if this scale could be tied to absolute standards, with an absolute accuracy of 5 per meg or better. Both tasks are very challenging, however, and it is not clear how best to implement such measures at this time. What is needed at present are creative efforts on the part of individual laboratories or among groups of laboratories to test strategies for intercalibration and to test approaches to standards development. At the Scripps Institution of Oceanography, for example, a program is underway to develop air standards for O₂/N₂ ratio analysis based on gravimetry. Another identifiable need is having several stations worldwide where samples can be collected in parallel for several laboratories, as this will aid in establishing the offsets between the individual laboratory scales in the absence of a common scale. Two such stations already exist: (1) Cape Grim station, where samples are currently being collected for laboratories at Princeton, Scripps, and CSIRO, and (2) the Scripps Pier in La Jolla, California, where samples are being collected for Princeton and Scripps.

WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH

No. 161

12th WMO/IAEA MEETING OF EXPERTS ON CARBON DIOXIDE CONCENTRATION AND RELATED TRACERS MEASUREMENT TECHNIQUES

(Toronto, Canada, 15-18 September 2003)

Details of the GOLLUM programme

- Rotation of cylinders started in 2004, for 11 years
 - Stopped in 2014 as cylinders needed to be refilled
 - Refilling did not happen until 2020 Tim Lueker has guaranteed this will never reoccur
- Rotations resumed in 2021, continuing indefinitely
- Rotations consist of 2 sets of 3 cylinders, referred to as "Bilbo" and "Frodo" sets
 - The two sets rotate in opposite directions around the world
 - NOTE: The same 6 cylinders are used in both time periods
 - <u>BUT 2 CYLINDERS HAVE SWITCHED THEIR AFFILIATION</u> between Frodo and Bilbo!
 - Do not let this confuse you!
- Species included: O₂/N₂, CO₂, Ar/N₂

2004-2014:

- 10 participating laboratories
- 2021-present:
 - 11 participating laboratories in 7 countries
 - AIST + ICOS added; PU stopped
- GOLLUM programme has never had any source of funding!!

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Slide 11 of 37

http://gollum.uea.ac.uk/

University of East Anglia School of Environmental Sciences CRAM Laboratory

Global Oxygen Laboratories Link Ultra-precise Measurements

Home	Rotations 2004-14	(PDF)	Rotations 2021 - present (PD	DF)	Shipping Information	Participants (PDF)	Stations M	ap	Protocols (PDF)
View Data (pa	assword required)	Submit D	Data (password required)	2010	Royal Society GHG Talks	2015 APO Workshop	Talks	2020 AP	O Workshop Talks

Background on Atmospheric oxygen measurement

Atmospheric oxygen (O₂) measurements are used to provide insight and quantitative understanding of the global carbon cycle [*Bender et al.*, 1996; *Bender et al.*, 1998; *Keeling and Shertz*, 1992]. More recently they have been used in other applications such as understanding air-sea gas exchange [*Keeling et al.*, 1998] and critiquing ocean biogeochemical and atmospheric transport models [*Battle et al.*, 2006; *Stephens et al.*, 1998].

Atmospheric O₂ measurements were first established in 1988 by Professor Ralph Keeling at Scripps Institution of Oceanography [*Keeling*, 1988], and are now made at ~12 laboratories around the world, and at ~25 field stations. The measurements are extremely challenging. For example, the relative precision required, as stipulated by the World Meteorological Organisation Global Atmosphere Watch (WMO/GAW), is 0.0001%. By contrast, the WMO/GAW-required precision for CO₂, also considered challenging, is only 0.03%.

Disclaimer:

1. All results here are preliminary and provisional

 These data must NOT be used to adjust any laboratory's calibration scales.

3. If you wish to use or present these data for any reason, please contact Andrew Manning: A.Manning@uea.ac.uk

Other Intercomparison

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Slide 14 of 37

Submitting data (i)										
Home Rotations 2004 View Data (password required	1-14 (PDI) S	F) Rotations 2021 – pre ubmit Data (password require	sent (PDF) Shipp ed) 2010 Royal S	ing Information ociety GHG Talks	Participants (PDF) St 2015 APO Workshop Tall	ations Map Protocols (PDF) ks 2020 APO Workshop Talks				
Data En	Data Entry User will be logged out after 60 mins of inactivity Log out now									
UEA					Admin Change t	ime period Change password				
		Analysis entry	type selectio	n '2004-1	4' time period					
Start a new entry			Subn	nit a text file						
Current entries for UE	A that (can be revised								
Note: due to the proc rotation database, on	ess use Iv basic	d for transferring data measurement data we	from the old 2004 re retained and all	such						
entries start at revisio	on 4 or	lower.								
	Loop	Cylinders received on	Current revision) (
Revise this entry	Bilbo	2009-09-23	5							
Revise this entry	Bilbo	2011-05-23	0							
Revise this entry	Bilbo	2013-01-31	0							
Revise this entry	Bilbo	2014-10-28	0							
Andrew Manning, UEA/EN	Frodo IV (a.m	anning@uea.ac.uk)	s WAO4 Wo	rkshop, Bruns	swick, USA, 23-25Au	g2023 Slide 15 of 37				

Submitting data (ii)

Revision number (0 if original, unrevised data):	6
Loop:	 Frodo Bilbo
Averaged data:	O Data averaged from analyses made over several days Data from single day's analysis

PLEASE NOTE:

Andrew Mannir

If <u>text file uploads</u> may be used in the future to revise this data, it is CRITICAL that the 'received pressure' date is the same as the earliest of the three dates for analysis of O_2 , CO_2 and Ar!

	Analysis date	Bilbo Cylinde	ers		Calibration scale info for each gas:
	Analysis date	CC178269	CC177811	CC180655	suppplied by who? name of scale?
received pressure (bar)	23/09/2009	88	65	91	
final pressure (bar)	23/09/2009	85	63	89	
O ₂ /N ₂ ratio (per meg)	(22 / 02 / 2000 🗖	-242.93	-398.44	-413.90	basic entry from csv, no info available
O ₂ /N ₂ precision (per meg)	(23/03/2003 [])	3.89	1.75	3.31	
CO ₂ mole fraction (ppm)	(22 / 02 / 2202 🗖)	359.430	383.610	358.360	basic entry from csv, no info available
CO ₂ precision (ppm)	(2376972009 []]	0.005	0.004	0.013	
Ar/N ₂ ratio (per meg)	(tt /m /mm)				basic entry from csv, no info available
Ar/N ₂ precision (per meg)					
Make and model of regulator	s used:				1
If you have given numbers in please describe here how you	the 'precision' rows, calculate these:				13
Are these final or provisional describe:	values? Please				
Describe the on-site callibrat	ion you performed				
A/ENV (a.manning@ue	ea.ac.uk)	WAO4 V	Vorkshop	, Brunswi	ick, USA, 23-25Aug2023

Submitting data (iii)

- I strongly recommend submitting data via an automated ASCII text file
 - Much faster after initial setup; reduces human errors

Submitting data (iv)

Example ASCII text file from Britt Stephens (NCAR)

- Generated automatically in Britt's lab by his data processing code

GOLLUM_Logsheet_NCAR_Bilbo06	- D
File Edit View	
NB: all text after // o	n each line is not processed. 22 total rows in file mandatory. ';' delimiter mandate B
Participant ID;	NCAR
Revised data;	Y
Revision number;	7
Averaged data?;	Y
O2 scale info;	SIO2017 O2 Scale (w/CO2-dilution corrected to WMO scale), -43 to -940 per meg, Jul
CO2 scale info;	WMO X2019 CO2 Scale (see SIO scale in separate file), 333 to 504 ppm, May 2021
Ar scale info;	
Regulator info;	Air Liquide, Model-14
Precision details;	1 standard deviation of the average results from 3 separate days
Calibration details;	Annually, 6 primaries that have had numbers assigned at Scripps (02 and CO2) and a
Damage noted;	
Other comments;	Revision for changes to WMO CO2 and SIO O2 scales.
02 analysis date;	20060723
CO2 analysis date;	20060723
Ar analysis date;	NaN
Results for all 3 cylin	ders below. If a cylinder is not analysed, please enter date and ID with all other
cyl ID Pi Pf O2conc	O2prec CO2conc CO2prec Arconc Arprec
CC177811 101 104 -398.8	8 1.02 383.572 0.006 NaN NaN
CC178269 127 127 -239.7	7 1.11 359.823 0.006 NaN NaN
CC180655 130 125 -412.1	8 1.19 358.7 0.029 NaN NaN

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Very preliminary and provisional results

VERY IMPORTANT:

- GOLLUM data are currently a mess, sorry!
- Many different calibration scales; sometimes not even known
- Much data not updated to latest scales
- Some data not yet received
- Some obvious errors, which labs need more time to investigate
- Please do not draw any negative conclusions from the following slides!
 - These slides are only to demonstrate some of the analyses that are possible with GOLLUM data

Smorgasbord of calibration scales

Organisation	O_2/N_2	CO2	Ar/N ₂			
AIST	AIST	AIST	?			
CIO-RUG	SIO2017	?	-			
ICOS	Pre-SIO2017	WMO X2019	?			
MPI-BGC	Pre-SIO2017	?	?			
NCAR	SIO2017	SIO CO ₂ ¹ + WMO X2019	-			
NIES	NIES original	NIES 09	-			
NIWA	Pre-SIO2017	?	-			
PU	PU	WMO X2007	?			
SIO	SIO2017	SIO CO ₂ ¹	SIO Ar/N ₂			
TU	TU	TU	-			
UBERN	?	?	?			
UEA	Pre-SIO2017	SIO CO ₂ ¹ + WMO X2007	-			
¹ But what does "SIO CO ₂ " mean?						

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Slide 22 of 37

Smorgasbord of calibration scales

Organisation	O_2/N_2	CO ₂	Ar/N ₂			
AIST	AIST	AIST	?			
CIO-RUG	SIO2017	?	-			
ICOS	Pre-SIO2017	WMO X2019	?			
MPI-BGC	Pre-SIO2017	?	?			
NCAR	SIO2017	SIO CO ₂ ¹ + WMO X2019	-			
NIES	NIES original	NIES 09	-			
NIWA	Pre-SIO2017	?	-			
PU	PU	WMO X2007	?			
SIO	SIO2017	SIO CO ₂ ¹	SIO Ar/N ₂			
TU	TU	TU	-			
UBERN	?	?	?			
UEA	Pre-SIO2017	SIO CO ₂ ¹ + WMO X2007	-			
¹ But what does "SIO CO ₂ " mean?						

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Slide 23 of 37

2021-2023 summary results: O₂/N₂, CO₂, Ar/N₂

2004-2014 summary results: Ar/N₂

2004-2014 summary results: CO₂

2004-2014 summary results: O_2/N_2

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

Linear + quadratic fits to Scripps CO₂

- Additional Scripps measurements in 2016 and 2018, allows more robust trend lines
- Linear fits in red; quadratic fits in blue

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023 Slide 3

Slide 32 of 37

Recalculate all results with Scripps fits: CO₂

- Do we get better agreement with linear or quadratic fits, compared to SIO 2004 offset?
 - No point trying to answer this until better quality control + scale updates

SIO 2004 offset Linear offset **Quadratic offset** Bilbo ACO2 - Offset from SIO 2004 data Bilbo ACO2 - Offset from SIO linear function Bilbo ACO2 - Offset from SIO quadratic function 0.5 0.5 0.50 0.3 0.30 0.3 (mdd) 0.1 0.10 0.1 0.1 X AC02 -0.1 -0.10 -0.3 -0.3 -0.30 -0.5 -0.50 -0.5 2004-Jan 2005-Dec 2008-Jan 2009-Dec 2012-Jan 2013-Dec 2016-Jan 2004-Jan 2005-Dec 2008-Jan 2009-Dec 2012-Jan 2013-Dec 2016-Jan 2004-Jan 2005-Dec 2008-Jan 2009-Dec 2012-Jan 2013-Dec 2016-Jan -Bilbo NCAR -------------------------------Bilbo TU ---------------------------------Bilbo NIES -Bilbo NCAR -Bilbo NIES -Bilbo UBERN -Bilbo MPI-BGC -Bilbo UEA -Bilbo UBERN -Bilbo MPI-BGC ---------------------Bilbo UEA -Bilbo UBERN -Bilbo MPI-BGC -Bilbo UEA Frodo ∆CO2 - Offset from SIO 2004 data Frodo ∆CO2 - Offset from SIO linear function Frodo ΔCO2 - Offset from SIO quadratic function 0.5 0.5 0.5 0.3 0.3 0.3 (mdd) ppr 0.1 0.1 0.1 ACO2 AC02 AC02 -0.1 -0.1 -0.1 -0.3 -0.3 -0.3 -0.5 -0.5 -0.5 2004-Jan 2005-Dec 2008-Jan 2009-Dec 2012-Jan 2013-Dec 2016-Jan 2004-Jan 2005-Dec 2007-Nov 2009-Oct 2011-Sep 2013-Aug 2015-Jul 2004-Jan 2005-Dec 2008-Jan 2009-Dec 2012-Jan 2013-Dec 2016-Jan -Frodo CIO-RUG -Frodo TU -Frodo NIES ---- Frodo NCAR -Frodo CIO-RUG -Frodo TU ---- Frodo NIES -Frodo NCAR -Frodo CIO-RUG -Frodo TU -Frodo NIES ---- Frodo NCAR ---- Frodo UEA -Frodo UBERN -Frodo MPI-BGC ---- Frodo LIFA ---- Frodo UBERN ---- Frodo MPI-BGC -Frodo UBERN -Frodo MPI-BGC

Recalculate all results with Scripps fits: O_2/N_2

- Do we get better agreement with linear or quadratic fits, compared to SIO 2004 offset?
 - No point trying to answer this until better quality control + scale updates

Other O₂ intercomparison programmes

- "Sausage" flask intercomparison
 - GOLLUM ran such a programme for a few years in the 2000's
 - Any interest in restarting this?
- Co-located "supersite" measurements
 - Flasks from two organisations: e.g. ALT (SIO + MPI-BGC)
 - Continuous and flasks: e.g. LJO
 - Do we want more of these?
- WMO Round Robins
 - Britt (NCAR) measures these for O_2/N_2 , so these act like a GOLLUM snapshot
 - You need to tell NOAA (Duane) that you want to do O₂/N₂ analyses
 - Figure shows 2014/15 WMO RR:

Future outlook: Suggestions and plans (i)

- Establish recommendations for best practice to maintain links to SIO O₂ scale
 - A) For those who have Scripps Primary cylinders
 - B) For those who maintain their own in-house scales
- GOLLUM cylinders **must** rotate faster
 - 5 weeks in each laboratory (+ shipping time)
 - Average so far = \sim 8 weeks
- GOLLUM data **must** be submitted timely
 - 5 weeks after analyses
- Many labs **must** update to SIO 2017 O₂ scale
 - And any successor SIO O_2 scale
 - Suggested goal to do so: 1 year after scale is released
 - My lab is also very guilty here!!
- New scale releases from SIO should be announced on GOLLUM mailing list
 - (To add/remove people to GOLLUM (or APO) mailing lists email Andrew)
- I welcome feedback and criticism website, protocols, data analyses...

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk) WAO4 Workshop, Brunswick, USA, 23-25Aug2023 Slide 36 of 37

Future outlook: Suggestions and plans (ii)

Next steps – my request:

- Everyone to quality control their GOLLUM data, including checking how it looks on the website
- Where relevant, everyone to update to SIO 2017 O_2 scale
 - And apply next SIO scale update promptly
- Then we will look again at linear + quadratic offsets
 - Any suggestions for alternative offset analyses?
- What should we do about CO₂, given the scale differences?
- Have not looked at mole fraction dependencies, but this will be limited by the mole fractions of the cylinders:
 - 2021-onwards will be better...
- Cylinders with dip tubes?

- Finally, how to use GOLLUM results to merge datasets for the data users???
 - In "Cucumbers" ICP, we quantified average lab offsets over 5-year timeframes

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Slide 37 of 37