Using atmospheric oxygen in the global carbon budget and monitoring systems

Ingrid Luijkx^{*}, Kim Faassen, Doris Vertegaal, Joram Hooghiem^{*}, Auke van der Woude, Lucas Hulsman, Lois de Beijl, Katia Savin, Harro Meijer

Plus discussion session

Timeline of the talk and discussion session (13:55-15:05)

- Using atmospheric oxygen in the global carbon budget and monitoring systems
- Discussion on merging datasets and creating an O₂ Obspack product
- If time allows: discussion on concerns raised by Andrew Kowalski in a review to Yan et al. (2023) on transport of O_2 in the atmosphere, and the effects of different forms of diffusion for non-trace gases

Timeline of the talk and discussion session (13:55-15:05)

- Using atmospheric oxygen in the global carbon budget and monitoring systems
- Discussion on merging datasets and creating an O₂ Obspack product
- If time allows: discussion on concerns raised by Andrew Kowalski in a review to Yan et al. (2023) on transport of O_2 in the atmosphere, and the effects of different forms of diffusion for non-trace gases

CORSO (Copernicus CO2MVS) & PARIS projects

• Currently 2 EU projects are taking O₂ onboard as tracers for CO₂, specifically for estimating fossil fuels, and emission monitoring, based on the methodologies developed by Pickers et al. (2022).

CORSO (Copernicus CO2MVS) & PARIS projects

- Currently 2 EU projects are taking O₂ onboard as tracers for CO₂, specifically for estimating fossil fuels, and emission monitoring, based on the methodologies developed by Pickers et al. (2022).
- <u>PARIS</u> (Process Attribution of Regional Emissions) focusses on using inverse methods next to bottom up inventories for country level emission evaluation.
- <u>CORSO</u> (CO2MVS Research on Supplementary Observations): focusses on assessing the added value of new observations for the Copernicus CO₂ Monitoring and Verification System that is developed at ECMWF. Here, O₂ and ¹⁴C are assessed side by side.

CORSO (Copernicus CO2MVS) & PARIS projects

- New and continued observations at:
 - 2 sites in the UK (WAO, HDF) by University of East Anglia (Penelope Pickers, Karina Adcock and Andrew Manning)
 - all ~18 flask locations (CLASS 1 stations) across Europe by ICOS (Markus Eritt)
 - 2 sites in the Netherlands (CBW, ROT) by University of Groningen and Wageningen University (Lois de Beijl, Katia Savin, Harro Meijer, Ingrid Luijkx)

• O₂ modelling efforts:

- University of Bristol (Eric Saboya and Matt Rigby, based on the discussion paper by Chawner et al. 2023)
- Wageningen University (Doris Vertegaal, Joram Hooghiem, Auke van der Woude)
- ECMWF (Auke Visser)

Copernicus CO2MVS, CORSO & PARIS projects

WAGENINGEN UNIVERSITY & RESEARCH

Copernicus CO2MVS, CORSO & PARIS projects

• Intial model results with TM5 (Doris Vertegaal and Joram Hooghiem)

• More details in Britt's Forward APO MIP tomorrow

Timeline of the talk and discussion session (13:55-15:05)

- Using atmospheric oxygen in the global carbon budget and monitoring systems
- Discussion on merging datasets and creating an O₂ Obspack product
- If time allows: discussion on concerns raised by Andrew Kowalski in a review to Yan et al. (2023) on transport of O_2 in the atmosphere, and the effects of different forms of diffusion for non-trace gases

Global Carbon Budget

- Next cycle in progress (synthesis in September)
- Workshop GCB Exeter 3-6 July 2023
- Current role for O₂
- Discussion on adjustments
- New opportunities for O₂

Earth Syst. Sci. Data, 14, 4811–4900, 2022 https://doi.org/10.5194/essd-14-4811-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Science

CARBON

PROJECT

GLOBAL

Global Carbon Budget 2022

Pierre Friedlingstein^{1,2}, Michael O'Sullivan¹, Matthew W. Jones³, Robbie M. Andrew⁴, Luke Gregor⁵, Judith Hauck⁶, Corinne Le Quéré³, Ingrid T. Luijkx⁷, Are Olsen^{8,9}, Glen P. Peters⁴, Wouter Peters^{7,10}, Julia Pongratz^{11,12}, Clemens Schwingshackl¹¹, Stephen Sitch¹, Josep G. Canadell¹³, Philippe Ciais¹⁴, Robert B. Jackson¹⁵, Simone R. Alin¹⁶, Ramdane Alkama¹⁷, Almut Arneth¹⁸, Vivek K. Arora¹⁹, Nicholas R. Bates^{20,21}, Meike Becker^{8,9}, Nicolas Bellouin²², Henry C. Bittig²³, Laurent Bopp², Frédéric Chevallier¹⁴, Louise P. Chini²⁴, Margot Cronin²⁵, Wiley Evans²⁶, Stefanie Falk¹¹. Richard A. Feely¹⁶, Thomas Gasser²⁷, Marion Gehlen¹⁴, Thanos Gkritzalis²⁸, Lucas Gloege^{29,30}, Giacomo Grassi¹⁷, Nicolas Gruber⁵, Özgür Gürses⁶, Ian Harris³¹, Matthew Hefner^{32,33} Richard A. Houghton³⁴, George C. Hurtt²⁴, Yosuke Iida³⁵, Tatiana Ilyina¹², Atul K. Jain³⁶ Annika Jersild¹², Koji Kadono³⁵, Etsushi Kato³⁷, Daniel Kennedy³⁸, Kees Klein Goldewijk³⁹, Jürgen Knauer^{40,41}, Jan Ivar Korsbakken⁴, Peter Landschützer^{12,28}, Nathalie Lefèvre⁴², Keith Lindsay⁴³, Junjie Liu⁴⁴, Zhu Liu⁴⁵, Gregg Marland^{32,33}, Nicolas Mayot³, Matthew J. McGrath¹⁴ Nicolas Metzl⁴², Natalie M. Monacci⁴⁶, David R. Munro^{47,48}, Shin-Ichiro Nakaoka⁴⁹, Yosuke Niwa^{49,40} Kevin O'Brien^{51,16}, Tsuneo Ono⁵², Paul I. Palmer^{53,54}, Naiging Pan^{55,56}, Denis Pierrot⁵⁷, Katie Pocock²⁶, Benjamin Poulter⁵⁸, Laure Resplandy⁵⁹, Eddy Robertson⁶⁰, Christian Rödenbeck⁶¹, Carmen Rodriguez⁶², Thais M. Rosan¹, Jörg Schwinger^{63,9}, Roland Séférian⁶⁴, Jamie D. Shutler¹, Ingunn Skjelvan^{63,9}, Tobias Steinhoff⁶⁵, Qing Sun⁶⁶, Adrienne J. Sutton¹⁶, Colm Sweeney⁴⁸ Shintaro Takao⁴⁹, Toste Tanhua⁶⁵, Pieter P. Tans^{67,68}, Xiangjun Tian⁶⁹, Hanqin Tian⁵⁶, Bronte Tilbrook^{70,71}, Hiroyuki Tsujino⁵⁰, Francesco Tubiello⁷², Guido R. van der Werf⁷³, Anthony P. Walker⁷⁴, Rik Wanninkhof⁵⁷, Chris Whitehead⁷⁵, Anna Willstrand Wranne⁷⁶, Rebecca Wright³, Wenping Yuan⁷⁷, Chao Yue⁷⁸, Xu Yue⁷⁹, Sönke Zaehle⁶¹, Jiye Zeng⁴⁹, and Bo Zheng⁸⁰

The budget components

Inverse estimates

- Closed carbon balance by design
- Mostly used for latitudinal distribution
- And assessing the budget uncertainties

Uncertainties in the budget

Where is O₂ in this budget?

- Ocean models:
 - O_2/N_2 method is used to verify that the GOBMs provide realistic ocean sinks.
 - Values for the 1990s are used from IPCC (Manning and Keeling, 2006; Keeling and Manning, 2014), but not for more recent periods.
 - Estimates from Tohjima et al. 2019 are used for model evaluation, and discussed as indication of possible larger ocean sink for recent years (2012–2016: 3.1±1.5 PgC yr⁻¹).

Where is O₂ in this budget?

- Ocean models:
 - O_2/N_2 method is used to verify that the GOBMs provide realistic ocean sinks.
 - Values for the 1990s are used from IPCC (Manning and Keeling, 2006; Keeling and Manning, 2014), but not for more recent periods.
 - Estimates from Tohjima et al. 2019 are used for model evaluation, and discussed as indication of possible larger ocean sink for recent years (2012–2016: 3.1±1.5 PgC yr⁻¹).

• DGVMs:

- O₂/N₂ method land sink is used as 1 of 3 criteria of minimum DGVM realism (Keeling and Manning, 2014) for 1990s and 2000s.
- 90% confidence interval: -0.28 to 2.28 PgC & -0.07 to 2.61 PgC

Table 3	Decadal global carbon budgets allowing for decadal O ₂
ventilation e	xchanges, superimposed on a constant ocean outgassing, $Z_{ m eff}$

Time frame	Ocean sink (Pg C year ⁻¹)	Land sink (Pg C year ⁻¹)			
1990–2000	2.16 (0.62)	1.00 (0.80)			
2000–2010	2.50 (0.60)	1.27 (0.84)			

Where is O₂ in this budget?

- Ocean models:
 - O_2/N_2 method is used to verify that the GOBMs provide realistic ocean sinks.
 - Values for the 1990s are used from IPCC (Manning and Keeling, 2006; Keeling and Manning, 2014), but not for more recent periods.
 - Estimates from Tohjima et al. 2019 are used for model evaluation, and discussed as indication of possible larger ocean sink for recent years (2012–2016: 3.1±1.5 PgC yr⁻¹).
- DGVMs:
 - O₂/N₂ method land sink is used as 1 of 3 criteria of minimum DGVM realism (Keeling and Manning, 2014) for 1990s and 2000s.
 - 90% confidence interval: -0.28 to 2.28 PgC & -0.07 to 2.61 PgC
- Discussion: potentional understanding land-ocean partitioning and budget imbalance

Table 3Decadal global carbon budgets allowing for decadal O_2 ventilation exchanges, superimposed on a constant ocean outgassing, Z_{eff}

Time frame	Ocean sink (Pg C year ⁻¹)	Land sink (Pg C year $^{-1}$)			
1990–2000	2.16 (0.62)	1.00 (0.80)			
2000–2010	2.50 (0.60)	1.27 (0.84)			

However... River adjustment is missing

- The global fCO₂-based flux estimates were adjusted to remove the preindustrial ocean source of CO₂ to the atmosphere of 0.65 GtC yr⁻¹ from river input to the ocean (Regnier et al., 2022) to satisfy the definition of S_{OCEAN} (Hauck et al. 2020).
- This is also applied to the inversions, which see the natural fluxes over land, transported by rivers from land to ocean, and outgassed by the ocean.
- The same regional adjustments are applied to allow comparison of the different budget components and inversions.

GLOBAL

With adjustment

Without adjustment (not correct)

However... River adjustment is missing

- The global fCO₂-based flux estimates were adjusted to remove the preindustrial ocean source of CO₂ to the atmosphere of 0.65 GtC yr⁻¹ from river input to the ocean (Regnier et al., 2022) to satisfy the definition of S_{OCEAN} (Hauck et al. 2020).
- This is also applied to the inversions, which see the natural fluxes over land, transported by rivers from land to ocean, and outgassed by the ocean.
- The same regional adjustments are applied to allow comparison of the different budget components and inversions.
- Needs to be applied to the O₂ method estimates as well, following the same reasoning.

Requests for larger role for O₂ in GCB

Discussed at the Exeter workshop, and requested by the core team:

- Extention of validation of GOBMs and DGVMs for more recent decades.
- Inclusion in Table and Figure as separate estimate, next to current budget components (on an annual basis?).

Potential larger role for O₂ in GCB

Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for different periods, the last decade, and the last year available. All values are in GtC yr⁻¹. See Fig. 7 for an explanation of the bookkeeping component fluxes. The DGVM uncertainties represent $\pm 1\sigma$ of the decadal or annual (for 2021) estimates from the individual DGVMs; for the inverse systems the range of available results is given. All values are rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.

GLOBAL

CARBON

PROJECT

		N	lean (GtC yr ⁻	1)				
		1960s	1970s	1980s	1990s	2000s	2012-2021	2021
Land-use change emissions (E_{LUC})	Bookkeeping (BK) Net flux (1a)	1.5 ± 0.7	1.2 ± 0.7	1.3 ± 0.7	1.5 ± 0.7	1.4 ± 0.7	1.2 ± 0.7	1.1 ± 0.7
	BK – deforestation	1.6 ± 0.4	1.5 ± 0.4	1.6 ± 0.4	1.8 ± 0.3	1.9 ± 0.4	1.8 ± 0.4	1.8 ± 0.4
	BK – organic soils	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1
	BK – re/afforestation and wood harvest	-0.6 ± 0.1	-0.6 ± 0.1	-0.6 ± 0.2	-0.7 ± 0.1	-0.8 ± 0.2	-0.9 ± 0.3	-1.0 ± 0.3
	BK – other transitions	0.4 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.1 ± 0.2
	DGVM net flux (1b)	1.4 ± 0.5	1.3 ± 0.5	1.5 ± 0.5	1.5 ± 0.6	1.6 ± 0.6	1.6 ± 0.5	1.6 ± 0.5
Terrestrial sink (S _{LAND})	Residual sink from global budget ($E_{\text{FOS}} + E_{\text{LUC}}$ (1a) $- G_{\text{ATM}} - S_{\text{OCEAN}}$) (2a)	1.7 ± 0.8	1.8 ± 0.8	1.6 ± 0.9	2.6 ± 0.9	2.8 ± 0.9	2.8 ± 0.9	2.8 ± 1
	DGVMs (2b)	1.2 ± 0.4	2.2 ± 0.5	1.9 ± 0.7	2.5 ± 0.4	2.7 ± 0.5	3.1 ± 0.6	3.5 ± 0.9
Total land fluxes $(S_{\text{LAND}} - E_{\text{LUC}})$	GCB2022 budget (2b-1a)	-0.2 ± 0.8	1 ± 0.9	0.5 ± 1	1 ± 0.8	1.4 ± 0.9	1.9 ± 0.9	2.4 ± 1.1
	Budget constraint (2a-1a)	0.2 ± 0.4	0.6 ± 0.5	0.3 ± 0.5	1.1 ± 0.5	1.5 ± 0.6	1.5 ± 0.6	1.7 ± 0.7
	DGVMs net (2b-1b)	-0.1 ± 0.4	0.9 ± 0.5	0.4 ± 0.5	0.9 ± 0.4	1.2 ± 0.3	1.5 ± 0.5	1.9 ± 0.7
	Inversions*	-	-	0.3-0.6 (2)	0.7–1.1 (3)	1.2–1.6 (3)	1.1–1.7 (7)	1.5-2.1 (9)
Estimates are adjusted for the pr arentheses) of inversions in each	e-industrial influence of river fluxes and decade (Table A4).	the cement carbor	nation sink and are	also adjusted to co	ommon $E_{\rm FOS}$ (Sec	t. 2.6). The ranges	given include vary	ing numbers (in
	O_2 method				XX	XX	XX	XX

Requests for larger role for O₂ in GCB

Discussed at the Exeter workshop, and requested by the core team:

- Extention of validation of GOBMs and DGVMs for more recent decades.
- Inclusion in Table and Figure as separate estimate, next to current budget components (on an annual basis?).
- What do people here think? Is this feasible?
- What does it take to make this happen?
- What would be the time lag? Is an annual basis realistic?
- How about the ocean outgassing and its variability? (difference tables 1 and 3 in Keeling and Manning 2014)

Timeline of the talk and discussion session (13:55-15:05)

- Using atmospheric oxygen in the global carbon budget and monitoring systems
- Discussion on merging datasets and creating an O₂ Obspack product
- If time allows: discussion on concerns raised by Andrew Kowalski in a review to Yan et al. (2023) on transport of O_2 in the atmosphere, and the effects of different forms of diffusion for non-trace gases

- What is Obspack? (https://gml.noaa.gov/ccgg/obspack/data.php)
 - Data product merging datasets from different institutes. Compiled and released by NOAA and ICOS for different species. E.g. the most recent CO₂ obspack product (GVP 8.0) has 586 datasets from 66 labs: 30.207.706 datapoints.
 - Data is provided on the X2019 scale, or is converted by NOAA to this scale. Some data are on their own scale (e.g. Tohoku Univ. 2010 scale)
 - Data comes with extensive metadata and DOI
 - In netcdf or txt file format per record (in a zip file)
 - Free and open access, with a license to inform data providers on the use and acknowledge/cite/offer co-authorship where appropriate

• With more and more O_2 modelling efforts being started, there is a growing need for O_2 observational data, and Obspack offers a well used and documented framework that can be applied for O_2 as well.

- With more and more O_2 modelling efforts being started, there is a growing need for O_2 observational data, and Obspack offers a well used and documented framework that can be applied for O_2 as well.
- Is this supported by the groups present here?

- With more and more O₂ modelling efforts being started, there is a growing need for O₂ observational data, and Obspack offers a well used and documented framework that can be applied for O₂ as well.
- Is this supported by the groups present here?
- Which sites? Include campaigns?
- How about the scale?
 - Possibility to have a first package with different scales, but user notes?
 - Scale conversion to Scripps scale? By individual labs? Or central?
 - What can be the role of GOLLUM (or other ICPs) here?
- Differences in types of sampling, and reporting time per sample (integrated/grab samples/continuous)
- Other topics?

Timeline of the talk and discussion session (13:55-15:05)

- Using atmospheric oxygen in the global carbon budget and monitoring systems
- Discussion on merging datasets and creating an O₂ Obspack product
- If time allows: discussion on concerns raised by Andrew Kowalski in a review to Yan et al. (2023) on transport of O_2 in the atmosphere, and the effects of different forms of diffusion for non-trace gases

Concerns raised by Andrew Kowalski

Related to O₂ flux calculated by vertical gradient, as no Eddy Covariance O₂ is possible yet
 Biogeosciences

A Modeling Approach to Investigate Drivers, Variability and Uncertainties in O_2 Fluxes and the O_2 : CO_2 Exchange Ratios in a Temperate Forest

Yuan Yan 🖂, Anne Klosterhalfen, Fernando Moyano, Matthias Cuntz, Andrew C. Manning, and Alexander Knohl

But applies also to other O_2 ecosystem studies, incl. Faassen et al. 2023 and Ishidoya et al. 2013/2015

Two issues:

• Dilution effect (wet vs dry air)

Concerns raised in review to:

• Stephan flow and correction

Dilution effect (wet vs dry air)

• O₂ flux is calculated as:

•
$$F_{\{O_2\}} = -K_h * \frac{dO_2}{dz}$$

- dO₂ is measured in dry air in our community
- K is determined from EC, but has density (water) correction (WPL)

• So: issue solved

• But if O₂ can be measured with EC in the future, the WPL will be large, and can cause uncertainties

Transport in the atmosphere (background info)

- Molecular diffusion (small scale)
 - Caused by gradient of the species itself
- Turbulent diffusion (larger, atmospheric scale)
 - Caused by gradients in heat (turbulent convection) and wind shear
- Density diffusion or Stephan flow (small scale as induced by molecular diffusion)
 - Caused by gradients in water vapor
- Together these 3 mechanisms cause transport in the atmosphere

Example

• Example Felipe Lobos Atacama desert

Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert

WAGENINGEN

NIVERSITY & RESEARCH

Felipe Lobos-Roco^{1,2,Q}, Oscar Hartogensis¹, Jordi Vilà-Guerau de Arellano¹, Alberto de la Fuente³, Ricardo Muñoz⁴, José Rutllant^{4,5}, and Francisco Suárez^{2,6,7}

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Consequences for O₂ measurements?

• Kowalski 2017 and Kowalski et al. 2021:

•
$$ws = \frac{E}{\rho}$$
 $F_{\rm c} = F_{\rm c,ndiff} + F_{\rm c,diff} = w_{\rm s}\overline{\rho}_{\rm c} + \overline{\rho w'' f_{\rm c}''},$

- Kowalski: Stephan flow velocity needs to be corrected for, and is currently not done
- E is measured by EC which includes all 3 types of diffusion, incl. turbulence
- Stephan flow is very small, and when measuring dry air not relevant
- So our conclusion is that Stephan flow is not relevant on canopy scale, but only on leaf scale. Confirmed by O_2 ecosystem flux publications in our community that do not show issues
- When modelling O₂ it is important to stick with conserved variables (e.g. mole fractions)

Conclusion / discussion

- Issues raised are valid, but not relevant on the ecosystem scales that we study
- Any further thoughts on this issue?
- Questions?

