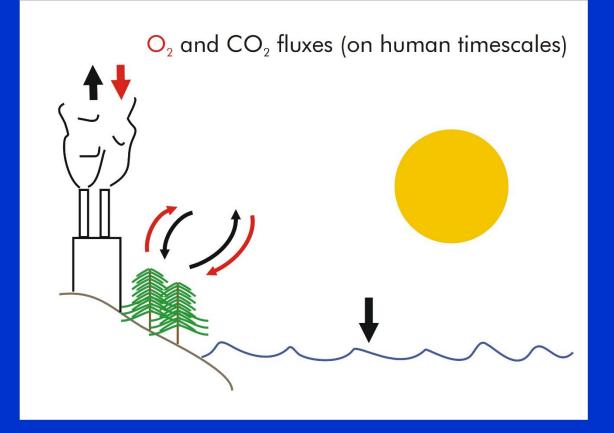
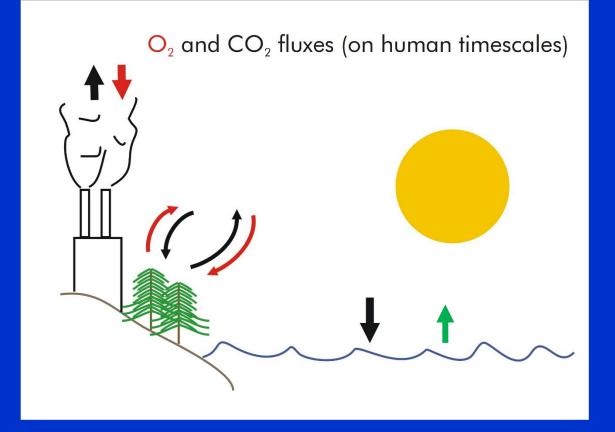
Toward a more complete O₂ budget: The impact of processing metal oxides and sulfur

> Mark Battle, Raine Raynor, Ralph Keeling and Stephen Kesler

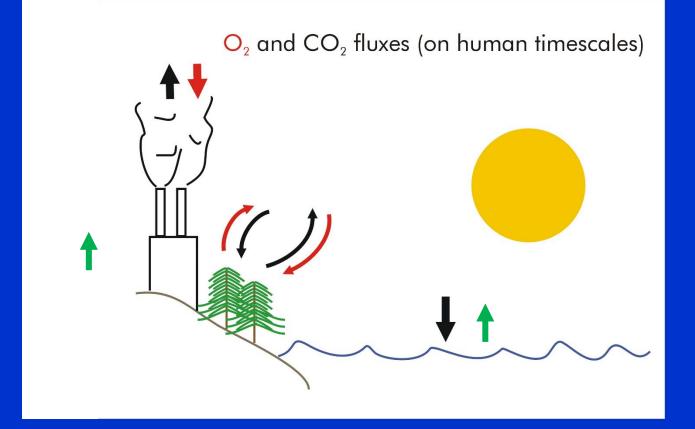

> > Support from Bowdoin College

WAO4 August 23,2023

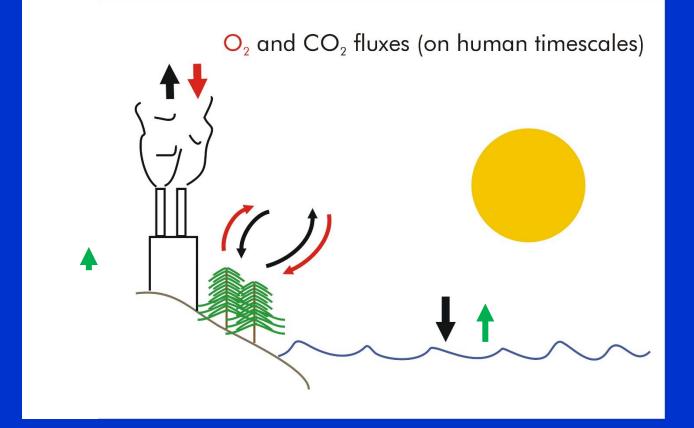
On the agenda:


- Motivation & overview
- Iron
- Aluminum
- Copper
- Sulfur
- Conclusions & next steps

The canonical O₂ and CO₂ budgets


 $\Delta CO_2 =$ Land biota + Industry + Ocean $\Delta O_2 =$ Land biota + Industry

The updated O₂ and CO₂ budgets


 $\Delta CO_2 = Land biota + Industry + Ocean$ $\Delta O_2 = Land biota + Industry + Z_{ocean}$

The upupdated O₂ and CO₂ budgets

 $\Delta CO_2 = Land biota + Industry + Ocean$ $\Delta O_2 = Land biota + Industry + Z_{ocean +} Z_{metals}$

The upupdated O2 and CO2 budgets

 $\Delta CO_2 = Land biota + Industry + Ocean$ $\Delta O_2 = Land biota + Industry + Z_{ocean + Z_{metals}}$

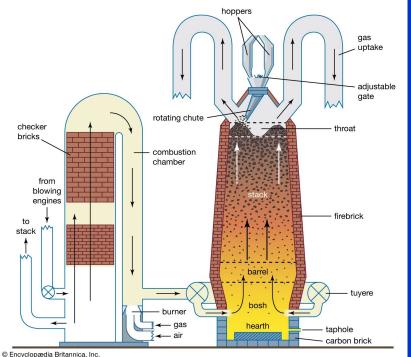
Conceptual perspectives:

- Oxidized metals are being reduced, effectively yielding a flux of oxygen to the atmosphere
- The carbon in fossil fuels is being oxidized by something other than atmosphere

Conceptual perspectives:

- Oxidized metals are being reduced, effectively yielding a flux of oxygen to the atmosphere
- The carbon in fossil fuels is being oxidized by something other than atmosphere

Either way, atmospheric O₂ is falling slower than the traditional equations predict.

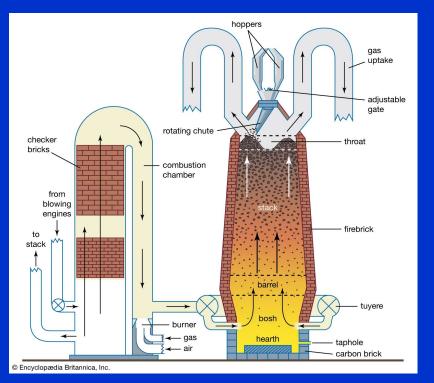

Conceptual perspectives:

- Oxidized metals are being reduced, effectively yielding a flux of oxygen to the atmosphere
- The carbon in fossil fuels is being oxidized by something other than atmosphere

Either way, atmospheric O_2 is falling slower than the traditional equations predict.

 $Z_{metals} = \Sigma production_i \times O_2 yield_i$

Iron oxides: 29 Tmol Fe in 2021 (USGS) Fe_2O_3 and Fe_3O_4

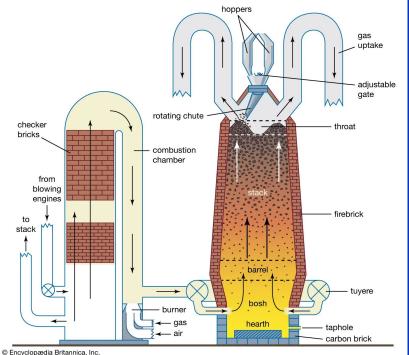


Net reaction:

 $\begin{array}{r} 6\mathsf{C} + 3\mathsf{O}_2 + 2\mathsf{Fe}_2\mathsf{O}_3 \\ \downarrow \\ 4\mathsf{Fe} + 6\mathsf{CO}_2 \end{array}$

https://www.britannica.com/technology/blast-furnace

Iron oxides: 29 Tmol Fe in 2021 (USGS) Fe_2O_3 and Fe_3O_4

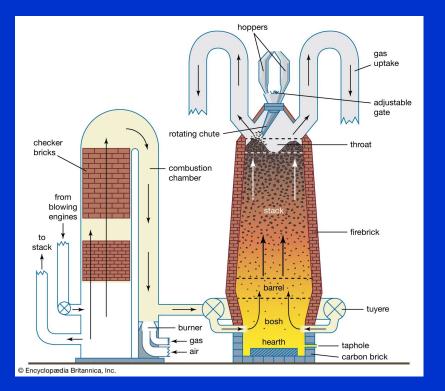


Net reaction:

 $\begin{array}{r} 6\mathsf{C} + 3\mathsf{O}_2 + 2\mathsf{Fe}_2\mathsf{O}_3 \\ \downarrow \\ 4\mathsf{Fe} + 6\mathsf{CO}_2 \end{array}$

https://www.britannica.com/technology/blast-furnace

Iron oxides: 29 Tmol Fe in 2021 (USGS) Fe_2O_3 and Fe_3O_4



Net reaction:

 $6C + 3O_2 + 2Fe_2O_3$ \downarrow 4Fe + 6CO₂

https://www.britannica.com/technology/blast-furnace

Iron oxides: 29 Tmol Fe in 2021 (USGS) Fe_2O_3 and Fe_3O_4

https://www.britannica.com/technology/blast-furnace

Net reaction:

 $\begin{array}{r} 6\mathsf{C} + 3\mathsf{O}_2 + 2\mathsf{Fe}_2\mathsf{O}_3 \\ \downarrow \\ 4\mathsf{Fe} + 6\mathsf{CO}_2 \end{array}$

Net flux: 4moles Fe yields 3moles O₂ Hematite: $6C + 3O_2 + 2Fe_2O_3$ \downarrow $4Fe + 6CO_2$

Net flux: 4moles Fe yields 3moles O2 Magnetite: $4C + 2O_2 + Fe_3O_4$ \downarrow $3Fe + 4CO_2$ Net flux: 3moles Fe

vet flux: 3moles Fe yields 2moles O₂

- Essentially all Fe is reduced*
- Hematite/Magnetite mixture not certain (80:20 is best guess*, but consider 95:5 and 50:50)
- Production uncertainties small (of order 0.75%)*

*Chris Tuck, USGS


Contributions to Z_{metals} (snapshot in 2018)

Fe: 27.6 Tmol \rightarrow +19.95 Tmol O₂

Aluminum in detail

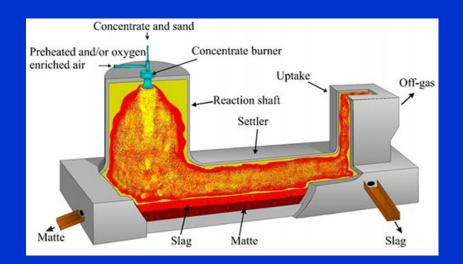
Aluminum Oxides: 2.5 Tmol Al in 2021 (USGS) AlO(OH) Al(OH)₃

Bauxite \rightarrow Alumina \rightarrow Aluminum $2Al_2O_3 \rightarrow 4Al + 3O_2$

Net flux: 4moles Al yields 3moles O₂

https://link.springer.com/article/10.1007/s42452-019-0869-6/figures/1

- 85% of bauxite goes to alumina. Balance is not reduced.*
- Reduction of bauxite liberates O₂ as water.
- All oxides yield same O₂ during refining to alumina
- 88% of alumina is fully reduced.*
- During reduction of alumina, carbon anodes release CO_2 with O_2 from the alumina.



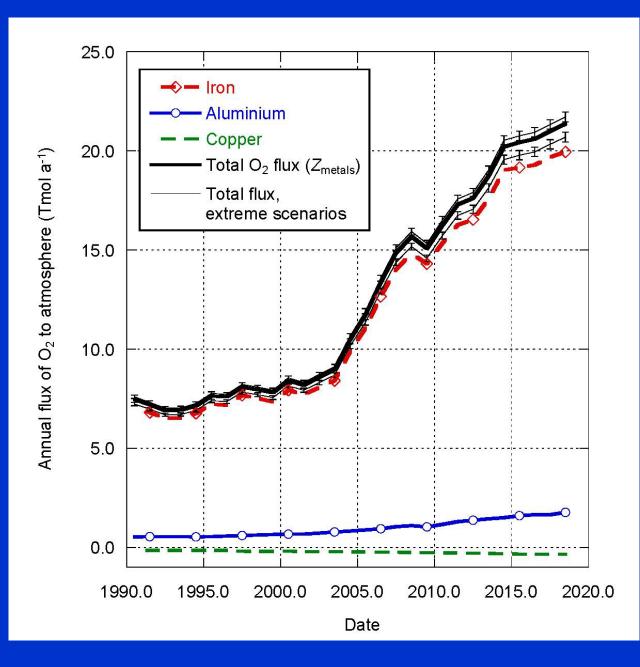
Contributions to Z_{metals} (snapshot in 2018)

Fe: 27.6 Tmol \rightarrow +19.95 Tmol O₂ Al: 2.36 Tmol \rightarrow +1.77 Tmol O₂

Copper oxides and sulfides: 0.33 Tmol Cu in 2021 (USGS) Mostly sulfides, some oxides Sulfides are O₂ sinks $CuFeS_2 \rightarrow \frac{1}{2}(FeO) + \frac{1}{4}(Fe_2O_3) + 2(SO_3)^*$

Net flux: 1mole Cu needs 3.625moles O₂

https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=394


- Recycled copper is irrelevant (no O₂ flux)
- Three different sulfide minerals and four oxides
- 85% of Cu production from sulfides*
- Sulfides liberate S and Fe, which oxidize with atm $\rm O_2$ and $\rm H_2O$
- Final states: H_2SO_4 , FeO and Fe_2O_3
- Ignore oxides (complicated and limited in amount)

Chalcopyrite:	Chalcocite:	Bornite:
CuFeS ₂	Cu ₂ S	Cu ₅ FeS ₄
Net flux:	Net flux:	Net flux:
8moles Cu	4moles Cu	40moles Cu
sinks	sinks	sinks
29moles O ₂	3moles O ₂	53moles O ₂

*Schlesinger et al. 2011

Contributions to Z_{metals} (snapshot in 2018)

Fe: 27.6 Tmol \rightarrow +19.95 Tmol O₂ Al: 2.36 Tmol \rightarrow +1.77 Tmol O₂ Cu: 0.32 Tmol \rightarrow -0.34 Tmol O₂

What does this mean for the oxygen budget? (2000-2010)

 $Z_{metals} = 12.0^{+0.2} - 0.4$ Tmol a⁻¹ $F_{ff} = 934 \pm 56$ $Z_{ocean} = 44 \pm 45$ $F_{land} = 96 \pm 77$ (inferred)

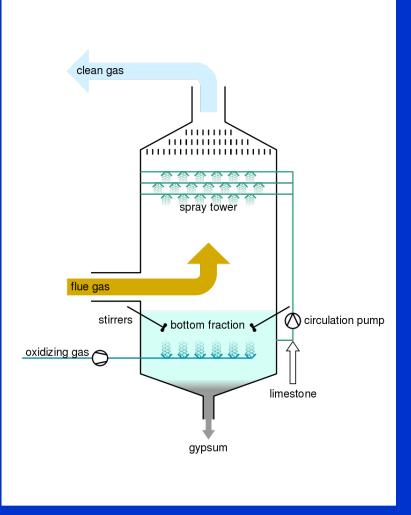
Keeling & Manning 2014

What does this mean for the carbon budget? (2000-2010)

Without Z_{metals} Ocean: $2.72 \pm 0.6 \text{ PgC} \text{ a}^{-1}$ Land: 1.05 ± 0.84 With Z_{metals} Ocean: 2.86 ± 0.6 Land: 0.91 ± 0.84

Keeling & Manning 2014

Looking ahead


- Z_{metals} evolves
- New methods of refining iron
- Move on from Bauxite
- More copper sulfides from deeper mines
- Will rusting of Fe catch up with production?

What about sulfur?

https://www.showcaves.com/english/explain/Resources/Sulfur.html

https://en.wikipedia.org/wiki/Flue-gas_desulfurization

- Transformed since the 1970s
- Currently 8% discretionary (mined), 92% non-discretionary (byproducts)
- Nearly all linked to FF production & combustion
- Starts in a reduced state $-O_2$ sink
- Built into $\alpha_{\rm ff}$ (via C,H,S,N ratios in $\alpha_{\rm gas}$, $\alpha_{\rm liquid}$, $\alpha_{\rm solid}$) assuming H₂SO₄ final state

- Transformed since the 1970s
- Currently 8% discretionary (mined), 92% non-discretionary (byproducts)
- Nearly all linked to FF production & combustion
- Starts in a reduced state $-O_2$ sink
- Built into $\alpha_{\rm ff}$ (via C,H,S,N ratios in $\alpha_{\rm gas}$, $\alpha_{\rm liquid}$, $\alpha_{\rm solid}$) assuming H₂SO₄ final state

- Transformed since the 1970s
- Currently 8% discretionary (mined), 92% non-discretionary (byproducts)
- Nearly all linked to FF production & combustion
- Starts in a reduced state $-O_2$ sink
- Built into $\alpha_{\rm ff}$ (via C,H,S,N ratios in $\alpha_{\rm gas}$, $\alpha_{\rm liquid}$, $\alpha_{\rm solid}$) assuming H₂SO₄ final state

The calculation of α_{ff}

(Keeling 1988, eq. 4.15)

 $CH_wO_xS_yN_z + (1+w/4-x/2+3y/2+5z/4)O_2$ $CO_2 + (w/2-y-z/2)H_2O + yH_2SO_4 + zHNO_3$ Oxidative ratio (α): coeff O₂/coeff CO₂ $\alpha_{\rm ff} = \Sigma c_i \alpha_i$ where i = gas, liquid, solid

The calculation of $\alpha_{\rm ff}$

(Keeling 1988, eq. 4.15)

 $CH_wO_xS_yN_z + (1 + w/4 - x/2 + 3y/2 + 5z/4)O_2$ $1CO_2 + (w/2 - y - z/2)H_2O + yH_2SO_4 + zHNO_3$ Oxidative ratio (α): coeff O₂/coeff CO₂ $\alpha_{\rm ff} = \Sigma c_i \alpha_i$ where i = gas, liquid, solid

- $\alpha_{gas} \& \alpha_{liquid}$ are fine
- α_{solid} not correct (flue gas desulfurization)

FGD: Add CaCO₃ or CaO, produce CaSO₃ or CaSO₄

Adjusting $\alpha_{\rm ff}$ is complicated.

Estimate: $\Delta Ocean carbon sink = -0.03Pg a^{-1}$ $\Delta Land carbon sink = +0.03Pg a^{-1}$

Overall Conclusions:

- Ignoring metals isn't a big deal
- Including metals increases estimated ocean uptake by ~0.14PgC a⁻¹ (previously 2.27+/-0.60) and decreases land equivalently.
- Changes are small compared to uncertainties, but still important. Use Z_{metals}!
- Sulfur is more complicated, but also a much smaller influence.