## The APO Forward Model Intercomparison Experiment





Britton Stephens, Matt Long, Frederic Chevallier, Yuming Jin, Ralph Keeling, Ingrid Luijkx, Shamil Maksyutov, Eric Morgan, Yosuke Niwa, Prabir Patra, Christian Rödenbeck, Jesse Vance



## Third Atmospheric Potential Oxygen Workshop – 2020 (virtual)



Collaborative goals:

- 1. Working toward reconciling scales to support analysis using merged data sets
- 2. Engaging with atmospheric transport modeling community for APO simulations

### Motivation 1: Interpretation of atmospheric O<sub>2</sub> measurements



**Courtesy Andrew Manning** 

Details on all records can be found here: <u>https://docs.google.com/document/d/1mBcd9GG\_ZcE3</u> <u>eiDIHYq5yA16D5Seq6dx</u> (prepared by Karina Adcock and Penelope Pickers)





From Jin et al., PNAS, submitted.

### Motivation 2: Evaluation of atmospheric transport models



## Contributing models

| Abbreviation           | Model System<br>Name                                    | Grid<br>(lat x lon x<br>lev)        | Transport<br>Model   | Meteorology      | Run start, valid<br>period                           | Leads                              | References                                                                             |
|------------------------|---------------------------------------------------------|-------------------------------------|----------------------|------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|
| CAM-SD                 | Community<br>Atmospheric Model<br>w/ MERRA-2<br>nudging | 0.9x1.25x5<br>6                     | САМ                  | MERRA-2          | Run start:<br>Jan 1986<br>Valid period:<br>1989-2019 | Matt Long and Jesse<br>Vance       |                                                                                        |
| CAMS_LMDZ              | Copernicus<br>Atmosphere<br>Monitoring Service          | 1.875 x<br>3.75 x 39                | LMDZ6A               | ECMWF            |                                                      | Frederic Chevallier                | Chevallier et al.<br>(2010, 2005);<br>Chevallier (2013)                                |
| CTE_TM5                | CarbonTracker<br>Europe                                 | 1 x 1 x 25                          | TM5                  | ECMWF            |                                                      | Ingrid Luijkx and<br>Wouter Peters | van der Laan-Luijkx<br>et al. (2017)                                                   |
| Jena_TM3               | Jena CarboScope                                         | 4 x 5 x 19                          | тмз                  | NCEP             |                                                      | Christian Roedenbeck               | Rodenbeck et al.<br>(Rödenbeck et al.,<br>2003); Rödenbeck<br>(2005)                   |
| MIROC4-ACTM            | MIROC4-ACTM                                             | 2.8 x 2.8 x<br>67                   | MIROC4-AC<br>TM      | JRA-55           |                                                      | Prabir Patra                       | Patra et al. (2018);<br>Saeki and Patra<br>(2017); Chandra et<br>al., in review (2021) |
| NICAM-TM<br>(glevel-5) | NICAM-based<br>Transport Model                          | ~223 km                             | NICAM-TM_<br>gI5     | JRA-55           | Run start:<br>Jan1986<br>Valid period:<br>1989-2020  | Yosuke Niwa                        | Niwa et al. (2011,<br>2017)                                                            |
| NICAM-TM<br>(glevel-6) | NICAM-based<br>Transport Model                          | ~112 km                             | NICAM-TM_<br>gl6     | JRA-55           | Run start:<br>Jan1986<br>Valid period:<br>1989-2020  | Yosuke Niwa                        | Niwa et al. (2011,<br>2017)                                                            |
| NIES                   | NTFVAR                                                  | 3.75 x 3.75<br>x 42 / 1 x 1<br>x 40 | NIES-TM/<br>FLEXPART | ERA-5/JRA-5<br>5 | Jan. 1, 2000<br>Jan. 1, 2003 -<br>Dec. 31, 200X      | Shamil Maksyutov                   | Belikov et al. (2011),<br>(Maksyutov et al.,<br>2021)                                  |

## Provided input fluxes (10 fields)

Jena APO inversion (version apo99X\_v2021) posterior fluxes (Rödenbeck et al., 2008)

• Seasonal air-sea APO flux only

CESM Forced Ocean–Sea-Ice (FOSI) simulation (Yeager et al., 2022)

• Air-sea O<sub>2</sub>, CO<sub>2</sub>, and N<sub>2</sub> fluxes

Bottom-up air-sea flux estimates

- O<sub>2</sub>: Seasonal component from dissolved O<sub>2</sub> climatology of Garcia and Keeling (2001), scaled by 0.82 according to Naegler et al. (2006). Annual mean component from ocean inversion of Resplandy et al. (2016) using transport from MITgcm-ECCO
- CO<sub>2</sub> : pCO<sub>2</sub>-based product of Landschützer et al. (2016) v.2021
- N<sub>2</sub> : Estimated using ERA5 heat fluxes and sea-surface temperatures, and seasurface salinity from the World Ocean Atlas, v.2018

Fossil fuel fluxes

- OCO-2 v10 MIP fossil-fuel fluxes (fossil CO<sub>2</sub> fluxes only)
- GCP-GridFED fossil-fuel fluxes, v. 2021.3 (fossil CO<sub>2</sub> emission and O<sub>2</sub> uptake tracers)

### Required Output for 2009-2018

Concentrations matching:

- 1. Primary aircraft campaigns
  - HIPPO, ORCAS, and ATom
- 2. Scripps O<sub>2</sub> Program stations
  - 10 station records
- 3. ARSV Laurence M. Gould
- 4. AIST/JMA aircraft samples

## **Optional Output**

- T, P, and Q
- All ObsPack files
- Additional Fixed Sites
- Additional Shipboard Records
- 3D fields
- Earlier records

Experiment protocol with fluxes and more details available here: <u>https://docs.google.com/document/d/1xcFHXuTbaldQTHUUnNz7</u> <u>aVItHhR6HWexPIW8JaKUFuc</u>

### Contribution details

| Abbreviation           | Required<br>ObsPack | Optional<br>Full<br>ObsPack | Optional<br>Additional<br>Ship | Optional<br>Additional<br>Fixed | Optional<br>3D | Optional<br>T, P, Q | Other                                                    |
|------------------------|---------------------|-----------------------------|--------------------------------|---------------------------------|----------------|---------------------|----------------------------------------------------------|
| CAM-SD                 | х                   |                             |                                |                                 | х              | х                   | Winds, BL height, land<br>CO2                            |
| CAMS_LMDZ              | Х                   |                             |                                |                                 |                |                     |                                                          |
| CTE_TM5                | х                   | х                           |                                | х                               | х              | х                   | Hz winds; BL height;<br>CTE components                   |
| Jena_TM3               | Х                   | Х                           |                                |                                 |                |                     |                                                          |
| MIROC4-ACTM            | х                   |                             | x                              |                                 |                |                     | Additional selected<br>ObsPack records,<br>inversion CO2 |
| NICAM-TM<br>(glevel-5) | х                   | х                           | х                              | х                               | х              | х                   | 2D surface fields                                        |
| NICAM-TM<br>(glevel-6) | х                   | х                           | х                              | х                               | х              | х                   | 2D surface fields                                        |
| NIES                   | Х                   |                             | Х                              | Х                               |                |                     |                                                          |

### Initial processing

- 1. Calculation of derived APO tracers (in addition to apo\_jena):
  - apo\_diss from Garcia and Keeling (2001) O<sub>2</sub>, Landschützer et al. (2016) CO<sub>2</sub>, and ERA N<sub>2</sub> air-sea fluxes
  - apo\_cesm from CESM O<sub>2</sub>, CO<sub>2</sub>, and N<sub>2</sub> air-sea fluxes
  - apo\_gridfed from GridFed O<sub>2</sub> and CO<sub>2</sub> fossil fluxes
  - apo\_oco2mip CO<sub>2</sub> fossil fluxes and a global O<sub>2</sub>:CO<sub>2</sub> ratio of -1.38
- 2. All required output reprocessed into ObsPack format with common variable names
- 3. All reprocessed and original output on a Globus endpoint with public access planned (contact Britt Stephens if interested in collaborating sooner than public release)

### Planned and potential analyses

- 1. Extrapolation of aircraft observations to hemispheric-scale SNO (Stephens and Jin)
- 2. Evaluation of diabatic mixing in transport models (Jin)
- 3. Evaluation of ocean and fossil contributions to O<sub>2</sub>:CO<sub>2</sub> ratios observed at terrestrial forest sites (Stephens and Battle)
- 4. Evaluation and correction of aircraft-based estimates of Southern Ocean CO<sub>2</sub> exchange (Jin and Vance)
- 5. Evaluation and correction of aircraft-based estimates of Southern Ocean O<sub>2</sub> exchange (Stephens and Jin)
- 6. Evaluation and improvement of flux products (TBD)
- 7. Evaluation of ocean contributions to APOff (TBD)

#### ATom-4 Southbound (27 Apr – 9 May, 2018)



Stephens et al., AMT, 2021

420

415

410

405

400

-620

-640

-660 -680

-700

 $\delta(O_2/N_2)$  (per meg)

CO<sub>2</sub> (ppm)



#### ATom-4 Southbound (27 Apr – 9 May, 2018)

Stephens et al., AMT, 2021

APO Curtain Averages (>20 N, >300 hPa)



### Tropospheric average APO concentration



Poleward of 20 degrees, > 300 hPa, N<sub>2</sub>O stratosphere filter, pressure and cos(lat) weighted

### Single-box inversions for Southern and Northern Extratropics



- APO Forward Experiment simulations used to correct for spatial sampling bias and mixing out of the box
- Corrections derived from the difference between box average APO concentration and integrated APO flux

### HIPPO and ATom southern extratropical APO curtain averages



Southern Extratropical Spatial / Mixing Correction

Cumulative 90S-20S APO Flux and CMIP6

Southbound

HIPPO-2

Ν

D J F Μ А

Tom-3

S Ο

Month

HIPPO-3

ATom-4

ΜJ

HIPPO-1 ATom-2

HIPPO-4

(see a more advanced approach in Yuming Jin's talk this afternoon)

### Station APO seasonal cycle comparison



### APO Seasonal Cycles at Cold Bay, Alaska

### TM3-Jena Transport of Various APO Tracers

### Various Model Transport of Jena Inversion Fluxes



Trend for each record removed, 2002-2019 means.

### Observed Column Mean and Near-surface Seasonal APO Amplitudes



### Seasonal APO Amplitude Ratio

Surface (> 900 hPa) : Column (1000 – 300 hPa)



**Dissolved Gas Fluxes** 

Surface APO amplitude reflects differences in speed of seasonal changes in fluxes more than in vertical mixing

### **Seasonal APO Amplitudes**

Pressure (mbar)



20

NICAM-TM\_gl5

60



#### Jena APO Inversion Fluxes









Jena\_TM3

-20 20 Latitude (°N)

NIES

MIROC4-ACTM

20 Latitude (°N)







CAM-SD

60



400

600

800

1000

-60

-20

NIES

20

Latitude (°N)

-20

60

**CESM Fluxes** 

MIROC4-ACTM

Jena\_TM3



NICAM-TM\_gl6



Pressure (mbar) 600 800 1000 20 60 -60 Latitude (°N)

400



CAM-SD



### **Seasonal APO Amplitudes**

Pressure (mbar)

400

600

800

1000

-60

Pressure (mbar)





#### Jena APO Inversion Fluxes





20

Latitude (°N)





Latitude (°N)









400 Pressure (mbar) 600 800 1000 -20 20 60 -60 Latitude (°N)

















NIES

Latitude (°N)

MIROC4-ACTM















Jena\_TM3

400

600

800

1000

400

600

800

1000

-60

Latitude (°N)

Pressure (mbar)

-60

Pressure (mbar)









Latitude (°N)

60







Latitude (°N)

# Annual average APO

CESM = apo\_cesm + apo\_oco2mip DISS = apo\_diss + apo\_oco2mip Jena = apo\_jena + apo\_oco2mip

- 1. Detrended observation or model data using linear trend at CGO of the corresponding model (or observation).
- 2. Binned data into pressure-latitude bins.
- Fit a 2-harmonic with offset to each bin.
  The annual average APO is calculated as the offset.



Figure courtesy Yuming Jin

### Ecosystem O<sub>2</sub>:CO<sub>2</sub> Ratios



WLEF O<sub>2</sub> and CO<sub>2</sub> (2000-2001)



WLEF Nighttime Buildup Ratios





Figure courtesy Mark Battle

### Modeled WLEF O<sub>2</sub> and CO<sub>2</sub>

CT with 34 levels has much larger diurnal cycles than CTE with 25



#### CTE\_TM5 (Total)



### Modeled WLEF O<sub>2</sub> and CO<sub>2</sub>



Fossil fuel signals cause winter ratios to diverge from -1.1 but not by as much as observed.

## Modeled WLEF O<sub>2</sub> and CO<sub>2</sub>



Similar result with CT2022 Land.

### Conclusions and Future Work

- 1) The APO Forward Model Intercomparison Experiment is ongoing and currently includes 8 submissions from 7 international groups
- 2) Initial applications include interpretation and extrapolation of atmospheric  $O_2$  observations and evaluation of model transport

3) Potential future augmentations include:

- Additional contributions (e.g. a GEOS model, LPDM)
- Additional perturbed fossil sources (Patra)
- Common specified land fluxes
- APO run as components and total
- 3D output from more models
- Fluxes optimized to match curtain averages
- More APO inversions? Other ideas?

