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Dissolved oxygen in the ocean

The response of marine organisms to different Atmospheric O, content
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Oxygen is a fundamental requirement for marine life from the seashore to the
greatest depths of the ocean. However, the stock of oceanic oxygen is relatively small,

which makes the ocean much more sensitive to changes in oxygen. 5
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Air-sea O, flux: a crucial factor for oxygen distribution

Schematic of major processes in the tropical Pacific
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Eddebbar et al., Global Biogeochem. Cycles., 2017

The air-sea O, flux plays an important role in the modifications of ocean O, content,

influencing regional residence times and redistribution of oxygen.
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Implications for carbon sink estimations

Diagram showing the calculation of the global ocean
and land carbon sink using oxygen datasets
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The accuracy of estimates for
the oceanic and land carbon
sinks is heavily dependent on
the method used to calculate
the global air-sea O, flux.
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The O, budget in modern Earth (1990-2005)
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From 1990 to 2005, the average annual total O, consumption was 38.99 Gt, while global

terrestrial and oceanic ecosystems only released 17.76 Gt of O, to the atmosphere, resulting in

a decrease of atmospheric O, at a rate of 21.23 Gt per year. .



Ocean oxygen decline under climate change

Due to the impact of climate change, the oxygen content in the ocean is decreasing
at an unprecedented rate (i.e. ocean deoxygenation). In the past 50 years, the ocean's

oxygen inventory has decreased by approximately 2% of the total amount.

The spatial distribution of ocean oxygen content The dissolved oxygen change since the 1960s
A
= ETECN
B N\ ol o wle

o 50 100 150 200 250 300
DO [umol kg] DO change [% decade™]

Schmidtko et al., Nature 2017 8



O, flux (Gt/yr)

Air-sea O, flux and its influence on ocean O, budget

Global annual air-sea O, flux in CMIPS models Ocean oxygen budget under climate change
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Model simulations indicate the amount of oxygen released by the ocean to the atmosphere
will increase from 1.7 Gt/yr in the historical period to 2.8 Gt/yr (RCP4.5) or 4.3 Gt/yr (RCP8.5)
by the end of this century. The rate of oxygen "escape" from the ocean is continuously
increasing, which means that the decline in oceanic oxygen content will accelerate in the future.



-« Mechanism of open ocean oxygen decline
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Discrepancies between model and observation

Current climate models do not reproduce observed patterns for oxygen changes in
the ocean’s thermocline and these models underestimate the temporal variability of

oxygen concentrations.

Mismatch of oxygen change between observation and models Equation that governs ocean oxygen concentrations in the model
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Discrepancies between model and observation

For the air-sea O, flux, most widely used parameterization in climate model is
based on the concept of molecular diffusion across the sea-surface boundary layer,

which lacks descriptions of gas transfer associated with collapsing bubble.

Bubbles in the sea-surface boundary layer Equation that governs ocean oxygen concentrations in the model
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Parameterizations for air-sea O, flux

Annual air-sea O, flux in the Labrador Sea for different parameterizations of gas exchange An illustration of bubble-
10 mediated processes
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The flux depends on .
Fgir—sea = k([O2] — [Oz,sat]) the concentration gradient Foir—sea = Fs + B(F + Fp)
B and the gas transfer velocity o . Bubble-mediated contribution
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The flux obtained from ‘diffusion-only’ scheme are only one-third of those from
‘bubble-inclusive’ scheme. It reveals a need for evaluation of the protocols used for _,
accounting for air—sea O, fluxes in current climate models.
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Comparisons between W92 and L13
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For less soluble gases (e.g. O,), there is an
important contribution from bubble injection.

The difference between W92 and L13 is
specifically significant at high wind-speed
situations



01

Why Focusing on Air-sea O, exchange

02

Air-sea O, Flux in Ocean Oxygen Budget

CONTENTS

03

Parameterization for Air-sea O, Flux

04

Bubble-mediated O, Flux in Climate Model

05

Summary and Discussions




;'“W;Zé?lntegrating bubble-mediated parameterization into CESM

The Community Earth System Model Model experiments design
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Focusing area: Southern Ocean
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Role of bubble in air-sea O, flux

The air-sea O, flux derived from bubble-inclusive scheme

(a) Annual Total: -123.9 Tmol yr'
Climate mean state
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Role of bubble in air-sea O, flux

Differences of air-sea O, flux between bubble-inclusive and diffusion-only models
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Comparisons with flux derived from Argo floats

Monthly air-sea O, flux for the four Southern Ocean regions
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Sensitivity of the flux to climate change

The annual air-sea O, flux anomaly in SSP2-4.5
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The oxygen flux derived from the bubble-inclusive scheme is more sensitive to climate
change, with a significantly higher linear trend compared to the flux from diffusion-only

scheme. 22



Sensitivity of the flux to climate change

The differences in the response of the flux to climate change between bubble-
inclusive and diffusion-only models.
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The regions with a greater sensitivity to climate change in the bubble-inclusive model
compared to the diffusion-only model are mainly situated in mid to high latitudes, particularly
in the North Atlantic and Southern Ocean. 23
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Summary and discussions

The air-sea O, flux is crucial for ocean oxygen cycle which modifies ocean O,
concentrations and residence times.

Model simulations reveals an intensified oxygen uptake associated with bubble injection
in the widespread Southern Ocean regions. A stronger response of the air-sea O, flux to
global warming has been found under the bubble-mediated model.

The absence of air-sea gas transfer descriptions associated with collapsing bubbles in
current models might lead to a severe underestimate in sensitivity of ocean oxygen cycle
to climate change
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