APO Workshop 2023-08-23

The suitability of atmospheric oxygen measurements to constrain Western European fossil-fuel CO₂ emissions and their trends

Christian Rödenbeck^{BGC}, Karina E. Adcock^{UEA}, Markus Eritt^{BGC}, Maksym Gachkivskyi^{IUP}, Christoph Gerbig^{BGC}, Samuel Hammer^{IUP}, Armin Jordan^{BGC}, Ralph F. Keeling^{SIO}, Ingeborg Levin^{IUP}, Fabian Maier^{IUP}, Andrew C. Manning^{UEA}, Heiko Moossen^{BGC}, Saqr Munassar^{BGC}, Penelope A. Pickers^{UEA}, Michael Rothe^{BGC}, Yasunori Tohjima^{NIES}, Sönke Zaehle^{BGC}

Many thanks to: Data contributors, DKRZ computing center

Fossil-fuel CO₂ emissions

Detailed "bottom-up" inventories exist, but

- completeness?
- political manipulation?
- \Rightarrow Need for independent validation

The global "oxygen cycle"

$$\begin{array}{c} \mathsf{CO}_2 \\ \bullet \\ \mathsf{O}_2 \\ = \alpha_{\mathsf{F}} \cdot \mathsf{CO}_2 \\ \\ \alpha_{\mathsf{F}} \approx -1.0 \text{ (coal)} \\ \\ \alpha_{\mathsf{F}} \approx -1.4 \text{ (fuel mix)} \\ \\ \alpha_{\mathsf{F}} \approx -2.0 \text{ (gas)} \end{array}$$

The global "oxygen cycle"

$$\begin{array}{c} \mathsf{CO}_2 & \mathsf{O}_2 & \mathsf{CO}_2 \\ = \alpha_\mathsf{F} \cdot \mathsf{CO}_2 & \mathsf{O}_2 \\ \alpha_\mathsf{F} \approx -1.0 \text{ (coal)} \\ \alpha_\mathsf{F} \approx -1.4 \text{ (fuel mix)} \\ \alpha_\mathsf{F} \approx -2.0 \text{ (gas)} & \bullet \end{array} \begin{array}{c} \mathsf{O}_2 \\ \approx -1.1 \cdot \mathsf{CO}_2 \\ \approx -1.1 \cdot \mathsf{CO}_2 \end{array}$$

The global "oxygen cycle"

$$\begin{array}{c} \mathsf{CO}_2 \\ = \alpha_{\mathsf{F}} \cdot \mathsf{CO}_2 \\ \alpha_{\mathsf{F}} \approx -1.0 \text{ (coal)} \\ \alpha_{\mathsf{F}} \approx -1.4 \text{ (fuel mix)} \\ \alpha_{\mathsf{F}} \approx -2.0 \text{ (gas)} \end{array} \xrightarrow{\mathsf{CO}_2} \begin{array}{c} \mathsf{CO}_2 \\ \approx -1.1 \cdot \mathsf{CO}_2 \\ \approx -1.1 \cdot \mathsf{CO}_2 \end{array} \xrightarrow{\mathsf{CO}_2} \end{array} \xrightarrow{\mathsf{CO}_2} \begin{array}{c} \mathsf{O}_2 \\ \gg \mathsf{CO}_2 \\ \approx -1.1 \cdot \mathsf{CO}_2 \end{array}$$

$$= \alpha_{\rm F} \cdot {\rm CO}_2 \qquad \approx -1.1 \cdot {\rm CO}_2$$

$$\alpha_{\rm F} \approx -1.0 \text{ (coal)}$$

$$\alpha_{\rm F} \approx -1.4 \text{ (fuel mix)}$$

$$\alpha_{\rm F} \approx -2.0 \text{ (gas)} \qquad \bullet$$

$$\begin{array}{c} \mathsf{CO}_2 \\ \bullet \\ \mathsf{O}_2 \\ = \alpha_\mathsf{F} \cdot \mathsf{CO}_2 \\ \\ \alpha_\mathsf{F} \approx -1.0 \text{ (coal)} \\ \\ \alpha_\mathsf{F} \approx -1.4 \text{ (fuel mix} \\ \\ \alpha_\mathsf{F} \approx -2.0 \text{ (gas)} \end{array}$$

$$\mathbf{APO} = (\alpha_{\mathsf{F}} + 1.1) \cdot \mathsf{CO}_2$$

 $CO_2 \qquad O_2 \qquad \gg CO_2$

$$\mathbf{APO} = (\alpha_{\mathsf{F}} + 1.1) \cdot \mathsf{CO}_2$$

 $APO \approx O_2$

APO inversion

$APO \approx O_2$

 $\mathsf{APO} = (\alpha_{\mathsf{F}} + 1.1) \cdot \mathsf{CO}_2$

 similar trend as FF inventory, but large variations exceeding the expected uncertainty

Emission estimates

Set A:

- similar trend as FF inventory, but large variations exceeding the expected uncertainty
- year-to-year variations inconsistent across stations

- Std. set-up: Recovering about half of trend

Potential of station sets

- Std. set-up: Recovering about half of trend
- More freedom: Trend recovery almost complete

Potential of station sets

- Std. set-up: Recovering about half of trend
- More freedom: Trend recovery almost complete
- More stations (ICOS): Improved trend recovery

Error influence: FF stoichiometry

- APO inversion constrains the FF-related APO flux
 - \rightarrow CO_2 emissions depend on assumed O_2:CO_2
- Here we use O₂:CO₂ of FF inventory
- Test: Varying O₂:CO₂ between -1.50 and -1.55 changes CO₂ emissions estimate by about half the decadal reduction

 \rightarrow Need to know $O_2:CO_2$ to better than 0.05

Error influence: NEE stoichiometry

What if true O_2 :CO₂ of terrestrial biosphere was -1.05 (rather than -1.1 as in APO def.)?

- \rightarrow non-zero $\text{APO}^{\text{NEE}}=0.05{\cdot}\text{NEE}$
- \rightarrow Small interannual error

Error influence: NEE stoichiometry

What if true O_2 :CO₂ of terrestrial biosphere was -1.05 (rather than -1.1 as in APO def.)?

- \rightarrow non-zero APO^{NEE} = 0.05·NEE
- → Small interannual error (but large seasonal error)

 First estimates of fossil-fuel CO₂ emissions based on few APO observations on continents (Europe) still show unrealistically large year-to-year variations

- First estimates of fossil-fuel CO₂ emissions based on few APO observations on continents (Europe) still show unrealistically large year-to-year variations
- However, additional APO measurement stations (e.g., by ICOS) may allow to constrain decadal trends in fossil-fuel CO₂ emissions

- First estimates of fossil-fuel CO₂ emissions based on few APO observations on continents (Europe) still show unrealistically large year-to-year variations
- However, additional APO measurement stations (e.g., by ICOS) may allow to constrain decadal trends in fossil-fuel CO₂ emissions
- Deviation of the actual O₂:CO₂ of land NEE from -1.1 does not seem to pose a fundamental obstacle on year-to-year time scales

- First estimates of fossil-fuel CO₂ emissions based on few APO observations on continents (Europe) still show unrealistically large year-to-year variations
- However, additional APO measurement stations (e.g., by ICOS) may allow to constrain decadal trends in fossil-fuel CO₂ emissions
- Deviation of the actual O₂:CO₂ of land NEE from -1.1 does not seem to pose a fundamental obstacle on year-to-year time scales
- Uncertainties in O₂:CO₂ of the fossil-fuel emissions need to be well below 0.05 (more work needed)

- First estimates of fossil-fuel CO₂ emissions based on few APO observations on continents (Europe) still show unrealistically large year-to-year variations
- However, additional APO measurement stations (e.g., by ICOS) may allow to constrain decadal trends in fossil-fuel CO₂ emissions
- Deviation of the actual O₂:CO₂ of land NEE from -1.1 does not seem to pose a fundamental obstacle on year-to-year time scales
- Uncertainties in O₂:CO₂ of the fossil-fuel emissions need to be well below 0.05 (more work needed)

Continued continental APO measurements seem valuable investment in FF verification capabilities

