Diverging trends in the APO seasonal cycle at northern high latitudes in the SIO Network <u>A tale of three sites</u>

Cindy Nevison University of Colorado

Ralph Keeling, Eric Morgan

Scripps Institution of Oceanography

APO Meeting (WAO4) Bowdoin College, Maine, Aug. 24, 2023

Acknowledgements: NSF Polar Programs

APO Monitoring Sites Scripps Institution of Oceanography (SIO)

Changes in APO Seasonal Cycle using Graven method: harmonic fits to 3-year running time series segments

Changes in APO Seasonal Cycle Method based on harmonic fits to 3-year running time series segments

Observed Changes in APO Seasonal Cycle 1990s to 2023

Site	Amplitude (per meg/yr)	Positive Zero Crossing (days/yr)	Negative Zero Crossing (days/yr)
CBA (55°N)	$+0.62 \pm 0.12$	-0.26 ± 0.08	Not significant
BRW (71°N)	-0.36 ± 0.13	Not significant	Not significant
ALT (82°N)	Not significant	Not significant	-0.48 ± 0.09

red = positive trend blue = negative trend

Gap in APO record at BRW

Components of APO seasonal cycle $APO = O_2/N_2 + 1.1CO_2$

harmonic fits to 3-year running time series segments

Barrow, Alaska

Components of APO seasonal cycle $APO = O_2/N_2 + 1.1CO_2$

Method based on harmonic fits to 3-year running time series segments

Alert, Canada

Components of APO seasonal cycle $APO = O_2/N_2 + 1.1CO_2$

Method based on harmonic fits to 3-year running time series segments

Cold Bay, Alaska

Amplitude Trends in APO and its components 1990s to 2023

Site	APO (per meg/yr)	O ₂ /N ₂ (per meg/yr)	1.1 CO ₂ (per meg/yr)
CBA (55°N)	$+0.62 \pm 0.12$	+ 0.69 ± 0.29	Not significant
BRW (71°N)	- 0.36 ± 0.13	+ 0.48 ± 0.11	+ 0.76 ± 0.08
ALT (82°N)	Not significant	+ 0.67 ± 0.08	+ 0.59 ± 0.06

Amplitude Trends in CO₂ 1990s to 2023

Site	CO _{2, pm} (ppm/yr)	1.1 CO ₂ (per meg/yr)	CO _{2, pm} /O ₂ N ₂ mean ratio
CBA (55°N)	Not significant	Not significant	0.59 ± 0.05
BRW (71°N)	+ 0.14 ± 0.015	+ 0.76 ± 0.08	0.66 ± 0.04
ALT (82°N)	+ 0.11 ± 0.01	$+0.59 \pm 0.06$	0.67 ± 0.01

Changes in CO₂ Seasonal Cycle Amplitude *Piao et al.*, 2017

used 9 terrestrial models, NOAA data from 1980 to 2012

"The multi-model ensemble mean (of 9 terrestrial ecosystem models) shows that the **response of ecosystem carbon cycling to rising CO₂ concentration and climate change** are dominant drivers ..."

Trends in NOAA CO₂ seasonal cycle amplitude

Method based on harmonic fits to 3-year running time series segments

Cold Bay, Alaska

Trends in NOAA CO₂ seasonal cycle amplitude

Method based on harmonic fits to 3-year running time series segments

Barrow, Alaska

Trends in NOAA CO₂ seasonal cycle amplitude

Method based on harmonic fits to 3-year running time series segments

Alert, Canada

Changes in CO₂ Seasonal Cycle Amplitude *Lin, Keppel-Aleks et al., 2020* used GEOS-Chem w/ tagged CO₂ tracers, NOAA data 1980 to 2017

"... enhanced seasonal carbon exchange in Siberia is the dominant contributor (followed by temperate ecosystems). Arctic-boreal North America shows much smaller changes in flux seasonality ... These continental contrasts corroborate heterogeneous vegetation greening and browning trends from field and remote-sensing observations "

Changes in CO₂ Seasonal Cycle Amplitude Bastos et al., 2019

used TRENDY and 2 inversion fluxes, NOAA data 1980 to 2015

... the most likely explanation of the seasonal cycle of atmospheric CO_2 at high latitudes is the CO_2 fertilization of photosynthesis in unmanaged high-latitude ecosystems, especially in the Eurasian boreal forests. "

How does uncertainty in the $O_2:CO_2$ ratio (α_B) affect APO trends at the NH sites?

Atmospheric O2 and CO2 observations ... sampling well mixed tropospheric air have consistently found

$-O_2:CO_2$ ratios to be within 1.10 \pm 0.05,

with very little temporal or spatial variability observed. *Pickers et al.*, 2022

$-O_2:CO_2$ biospheric for UK = 1.07 \pm 0.04

Chernow et al., 2023

1000 applications of Graven method α_B varies randomly 1.10 \pm 0.01 for each data point

Black vertical line is slope with constant $\alpha_{\rm B} = 1.1$

Linear decrease in α_B to 1.10 to 1.05 over 30 year time series

Decrease α_B to 1.08 in June-August, otherwise 1.1

Summary and Conclusions

- 3 long-term NH sites in SIO network all show contrasting amplitude trends.
- The increasing amplitude trend at Barrow, AK is sensitive to uncertainty in the O_2 :CO₂ biospheric exchange ratio used to compute APO and may be an artefact of the dramatic change in the CO₂ amplitude at BRW.
- The increasing amplitude trend at Cold Bay, AK is more robust with respect to uncertainty in O_2 :CO₂ and is more likely to be a true oceanic signal.