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In our project, Grant-in-Aid for Scientific Research (S), JSPS, we propose methods to evaluate changes in ocean heat
content, atmospheric circulation, and carbon/oxygen cycles based on wide-area observations of atmospheric
constituents; O,/N,, Ar/N, and their 6180, 6*>N and 6*°Ar, concentrations of CO, and COS and its §34S.
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biochemistry> physics
(photosynthesis,

(ocean temperature, factors o7
respiration)

gravitational separation)
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@net COZ uptake - 02+C02

@ocean heat content & net marine biological activities
= Ar+0,+gravitational separation (51N etc.)+CO,

®Photosynthesis - respiration = COS+5180+0,+CO,

Image of the combined analyses using multi species

0,/N, and Ar/N, have information about global
CO, cycle and air-sea heat flux, respectively, but
their variations are quite small. An effect of
stratospheric gravitational separation should

also be considered to discuss a secular trend of
Ar/N,.

COS and 680 of O, have information about
photosynthesis and respiration, however,
development of stable standard is needed for
COS, and 60 change in the present
atmosphere has never been detected.

In this regard, all Japanese institutes capable of
measuring the above-mentioned components,
and National Metrology Institute participate in
this research project. Moreover, modelers
capable of carrying out advanced inversion
analyses and simulation of gravitational
separation also join us. Therefore, we are going
to promote this project.
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Each analysis value (black
dots) and corresponding
annual average (blue circles)
of §(0,/N,) and &6(Ar/N,) of
three secondary standards
against the primary
standard air.

Anomalies of 6(0,/N,) and
6(Ar/N,) of the three
secondary standards shown
in bottom panels.

No systematic temporal
variations are found over
the 11 years.

The standard deviations of
the annual average 6(0,/N,)
and 6(Ar/N,)  anomalies
(£1.6 and £2.3 per meg)
corresponds to £0.20 and
+0.29 per meg yri,
respectively, for the 11-
year-long secular trends.
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Our surface stations where we have conducted simultaneous observations of 6(APO) and 6(Ar/N,)
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Our surface stations where we have conducted simultaneous observations of 6(APO) and 6(Ar/N,)
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We have also expanded the observation area using a merchant or a research vessels.



O(APO) (per meg)

S(Ar/N,) (per meg)

Ochiishi (COI), Minamitorishima (MNM), and Ryori (RYO), Japan
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Temporal variations of d(APO) and &(Ar/N,) at Tsukuba, Hateruma, and Ochiishi, Japan. Best-fit curves to the data
(solid lines) and interannual variations (dashed lines) are also shown. Rates of change of 5(APO) and &(Ar/N,) are also
shown by red lines (cutoff period is 36 months to obtain the interannual variation). The data observed at
Minamitorishima and Ryori located at close latitude to Hateruma and Ochiishi, respectively, are also shown. Since
Tsukuba is urban site, the APO data affected by local fossil fuel consumption were excluded from the analysis.
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Annual change rate of 8(APO) due to the solubility change (6(APO)y,.m,) from that due to the net marine

biological activities (6(APO),.i0) by @ combined analysis of 6(APO) and d(Ar/N,).

Bottom figure shows change rates of T T T T T T T
3(APO) R T
O(APO)herm =0(Ar/N,) x 0.9

O(APO), etpio + fossil fuel + air-sea CO, exchange = 0(APO) - 3(APO)iterm.

._.
S
I
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Right figure shows the rates and some climate indexes (discussed below).

d(APO) change rate (per meg a_l)

* It is known that the seasonal and interannual variations in 3(APO) are driven

mainly by the air-sea O, and N, fluxes, although the air-sea CO, and fossil fuel 3 .
fluxes cause a secular §(APO) trend. ?
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S3(APO) change rate (per meg a-l)

PDO SOI

OHC change rate (1022 J a<1)

global surface
temperature (°C)

Annual change rate of 6(APO) due to the solubility change

(O(APO)erm) from that due to the net marine biological activities
(O(APO),evio) by @ combined analysis of 6(APO) and 6(A1/N,).

The annual change rate of the average 6(APO)tem Was found
to vary in phase with the Southern Oscillation Index (SOI) and
the change rate of the global Ocean Heat Content (OHC).

xchange

On the other hand, the corresponding annual change rate of
the average O(APO), upis Varied in opposite phase with SOI.
Similar features of d(APO), i Were found from our aircraft
observations over MNM (Ishidoya et al., 2022).

e N U SIS

These responses of O(APO)erm and O(APO), ibior to El Nifio /
La Nina events are qualitatively consistent with those
expected from the simulations based on a community earth
system model by Eddebbar et al. (2017).

The Earth tends to gain more energy during La Nina, mainly
N | associated with reduction in outgoing longwave radiation
2 7 (Loeb et al., 2012). Negative PDO also tends to strength La

0.6 m

/4 Nifa condition. These characteristics seem to be consistent
1 with the rapid increase of 8(APO)y,.rm Since the late 2020.

*deviations from the average temperature
during 1991-2020 | SOl and surface temperature data are from JMA website. https://www.data.jma.go.jp/cpd/data/elnino/index/dattab.html

| | l l | | l l l l l https://www.data.jma.go.jp/cpdinfo/temp/mar_wld.html)
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 PDO and OHC data are from NOAA/NCEI| website. https://www.ncei.noaa.gov/access/monitoring/pdo/
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The sites where balloon observations for gravitational separation in the stratosphere,

evaluated based on d(Ar/N,), 8'°N, 6'%0 and 6*°Ar, have been conducted
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Gravitational separation of the atmosphere
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Vertical profiles of gravitational separation and age of air observed over Japan,

equatorial region, Arctica and Antarctica (updated from Ishidoya et al., 2008, 2013, 2018; Sugawara et al., 2018)
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Vertical profiles of gravitational separation and age of air observed over Japan,

equat()rial region, Arctica and Antarctica (updated from Ishidoya et al., 2008, 2013, 2018; Sugawara et al., 2018)

-~ Japan  (spring or summer, 18 profiles during 1988-2020) C02 age (years)
—O- Antarctic (summer, 5 profiles during 1998-2013)
--©-- Arctic (winter, 1997) -©-- Indonesia (2015) 0 1 2 3 4 5 6 7

L To interpret spatiotemporal
variations in gravitational separation
- and mean age of air, we carried out
2-D and 3-D model simulation using
SOCRATES and NIES-TM,
. respectively (e.g. Sugawara et al., 2018;
Belikov et al., 2019). For this purpose,
molecular-diffusion process from
- the surface to the middle
atmosphere was incorporated.
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Middle stratospheric &

Long-term changes 1n gravitational separation and age of air observed in the

(per meg)

middle stratosphere over Japan for the period 1988 — 2020
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We found year-to-year changes in the 6 were inversely correlated with that of the mean age. Based on
similar analysis by Ishidoya et al. (2013), secular enhancement of the Brewer-Dobson circulation (BDC) is

suggested from the relationships between the observed long-term changes in gravitational separation

and those in mean age. It must be noted the “enhanced BDC run” by 2-D model (SOCRATES) simulation
considered changes in mean stream function only. More realistic simulation by using 3-D model will be
needed as a next step.



Brief introduction of our recent project
Variations 1n Ar/N, and APO at some surface stations since 2012
Gravitational separation 1n the stratosphere over Japan since 1988

Combined analysis of the surface and the stratospheric Ar/N, trends



Long-term trend in the surface 6(Ar/N,) could also be modified by gravitational separation
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Gravitational separation is determined by a balance between molecular- and eddy-diffusion fluxes (e.g. Ishidoya et al., 2013;
Sugawara et al., 2018). Therefore, if the atmospheric circulation is weakened, then the atmosphere is more separated and the
surface 8(Ar/N,) should increase slightly. If this effect is significant compared with the surface 3(Ar/N,) increase by an ocean
heat uptake, then simultaneous observations of the stratospheric and surface 8(Ar/N,) must be important to evaluate ocean

Ishidoya et al. (2021 ACP)

heat content (OHC) changes.



Secular enhancement of BDC, suggested from our observations and 2-D model simulations for

gravitational separation and age of air, could cause slight secular decrease of the surface 6(Ar/N,)
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Secular enhancement of BDC, suggested from our observations and 2-D model simulations for

gravitational separation and age of air, could cause slight secular decrease of the surface 6(Ar/N,)
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Secular trend in the surface d(Ar/N,) its application to the estimation of the global OHC increase
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O(Ar/N,) at TKB, global OHC, global surface temperature, and
SOI are shown in the figure. Rates of change of the d(Ar/N,)
and OHC are also shown (red line). Both the rates show quite
similar interannual variations. However, the ratio of
“interannual variation / secular trend” for 8(Ar/N,) is much
larger than that for the OHC.

The linear secular trend of 8(Ar/N,) is also shown in the figure
(blue line). Considering the uncertainties around the
regression and the long-term stability of the standard air, the
trend is 0.5 £ 0.3 per meg/yr. The correction for gravitational
separation changes expected from enhanced BDC, and that
for technical issue associated with mass spectrometry we
have re-evaluated recently are roughly in similar extent and in
opposite direction, so that we adopt the trend of 0.5 per
meg/yr as it is in this analysis.

The OHC increases based on J(Ar/N,) trend (blue line),
assuming a conversion factor of 3.5 X 1023 per meg per joule
by assuming a one-box ocean with a temperature of 3.5° C,
was roughly in consistent with that based on the ocean
temperature measurements. The consistency suggests that
the O(Ar/N,) is an important tracer for detecting
spatiotemporally integrated changes in OHC and BDC.



Concluding remarks

Simultaneous observational results of 0(APO) and o(Ar/N,) at several sites since 2012 were
presented. Variations in the annual change rates of 0(APO),e;m and 0(APO), i, Were correlated
with SOI and the change rates of the global OHC.

Long-term variations in gravitational separation in the lower-to-middle stratosphere for the
period 1989-2020 were observed firstly. The vertical gradients of gravitational separation was
found to vary roughly in opposite phase with the middle stratospheric mean age of air. If we
follow the 2-D model simulation, then secular enhancement of the BDC is suggested.

The average OHC increase rates, estimated considering the secular trends in o(Ar/N,) and
gravitational separation, was consistent with that reported by ocean temperature measurements.
However, there are many 1ssues left unsolved, and more studies are needed to understand detail
mechanisms of the spatiotemporal variations in 0(Ar/N,) and gravitational separation.
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