What can ecosystem-scale oxygen measurements tell us about the terrestrial carbon cycle?

Alexander Knohl¹, <u>Andrew C. Manning²</u>, Anne Klosterhalfen¹, Christian Markwitz¹, Jan Muhr¹, Penelope A. Pickers², Yuan Yan¹, Emanuel Blei¹, and Jelka Bradens-Behrens¹

 ¹ Bioclimatology, University of Göttingen, Göttingen, Germany
² Centre for Ocean and Atmospheric Sciences, School of Environmental Scienes, University of East Anglia, Norwich, UK

> Corresponding author: Alexander Knohl (<u>aknohl@uni-goettingen.de</u>) Presenting author: Andrew Manning (<u>a.manning@uea.ac.uk</u>)

Talk outline

- Introduction to OXYFLUX project
- Stem chamber O₂ measurements
- Branch chamber O₂ measurements
- Vertical gradient O₂ measurements
- Terrestrial ecosystem modelling with O₂

OXYFLUX: ERC project from 2016-2023

- Some project aims:
 - Examine ER/OR (exchange ratios/oxidative ratios) of different ecosystems components
 - Leaf photosynthesis
 - Soil and stem respiration
 - Direct from organic matter
 - Canopy-scale
 - $-O_2$ eddy covariance?
 - Incorporate O₂ into ecosystem modelling
 - A holy grail of terrestrial ecologists: partition photosynthesis and respiration fluxes

•
$$F_{CO2} = F_P + F_R$$

•
$$F_{O2} = ER_P \times F_P + ER_R \times F_R$$

European Research Council Established by the European Commission

OXYFLUX: 2016-2023

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

Faculty of Forest Sciences and Forest Ecology Bioclimatology

EGU General Assembly 2023

Apparent respiratory quotient (ARQ) of soil

Table 1. The [CO₂], [O₂], and ARQ (average values of replicates) for in situ measurements in acidic and neutral soils in temperate and alpine forest sites (sites 4, 5, 6). Apparent respiratory quotient (ARQ) values different from the 0.9 ± 0.1 expected for respiration (based on plant composition) were observed in these soils.

Date	Site	Description	Soil pH	Depth (cm)	CO2 %	O ₂ %	ARQ
30/05/2001	4	Temperate forest	4.5	85	0.46	20.40	0.58 ± 0.05
31/07/2001	4	Temperate forest	4.5	85	0.73	20.20	0.70 ± 0.05
07/06/2011	5	Alpine forest	7.3	40	0.62	19.06	0.23 ± 0.04
09/09/2013	5	Alpine forest	7.3	30	0.28	20.67	0.64 ± 0.06
09/09/2013	6	Alpine forest	4.9	30	0.26	20.77	0.96 ± 0.24

"Our results demonstrate that, in contrast to the common assumption, soil ARQ (and RQ) values are rarely 1.0 and often deviate from this value considerably. ..."

Angert et al. 2015

ARQ of stems

Considerable variation in ARQ (CO₂/O₂)

Hilman et al. 2019

ARQ of stems much lower than expected

Talk outline

- Introduction to OXYFLUX project
- Stem chamber measurements
- Branch chamber measurements
- Vertical gradient measurements
- Terrestrial ecosystem modelling with O₂

"Typical" Oxzilla system, with heavily-modified front-end

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Stem chambers – on beech trees: Leinefelde, Germany field station

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Introduction - Instrumental set-up

- sequential measurement scheme for 16 chambers
- each measurement cycle (one chamber) for 20-40 minutes

 \rightarrow 4 steady-state, open-throughflow branch chambers

Stem O₂ and CO₂ time series fluxes

Stem chambers: ARQ results

MeasID_fig • Tree1 • Tree2 • Tree3 • MeasID_fig • Tree1 • Tree2 • Tree3 • 1

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Seemingly little or no ARQ correlation with temperature or season

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Talk outline

- Introduction to OXYFLUX project
- Stem chamber measurements
- Branch chamber measurements
- Vertical gradient measurements
- Terrestrial ecosystem modelling with O₂

Introduction - Instrumental set-up

- Leinefelde site in Central Germany:
 - 51°20 N, 10°22' E
 - pure beech forest, managed
 - even-aged, about 140 years old
- study period:
 - 17 June 08 October 2021
- available data:
- $1 \min$ CO₂, O₂ and H₂O mole fractions for chambers and buffer
- *1 min* chamber meteorology: PAR, T, T_{leaf}, RH
- *10 min* tower meteorology: SW_IN, T_{air}, RH, P, ...
- 30 min eddy-covariance flux data: NEE, GPP, LE

EGU General Assembly 2023

Methods - Data processing

• flux calculation (F_{CO_2} , F_{O_2}) for steady and unsteady state conditions:

$$F_{CO_2} = \frac{\Delta CO_2 \cdot flow - V\rho \frac{dCO_2}{dt}}{S} \qquad F_{O_2} = \frac{\Delta O_2 \cdot flow - V\rho \frac{dO_2}{dt}}{S}$$

with $\Delta CO_2, \Delta O_2$ difference between incoming and outgoing CO2 or O2 mole fractions (µmol mol⁻¹)flowflow rate (mol s⁻¹)Sleaf area (m²)Vchamber volume (m³) ρ air density (mol m⁻³) $\frac{dCO_2}{dt}, \frac{dO_2}{dt}$ rate of change of CO2 or O2 mole fractions (µmol mol⁻¹ s⁻¹)

Methods - Data processing

• finding measurement cycles of high quality (steady state):

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

Faculty of Forest Sciences and Forest Ecology Bioclimatology

Results - Meteorological conditions

quality

chamber data

Results - Seasonal dynamics

• 632 measurement cycles (425 daytime, 207 nighttime)

Results - Diel variations

• 632 measurement cycles (425 daytime, 207 nighttime)

Results - O₂:CO₂ exchange ratio

EGU General Assembly 2023

Results - correlations with meteorological conditions

Talk outline

- Introduction to OXYFLUX project
- Stem chamber measurements
- Branch chamber measurements
- Vertical gradient measurements
- Terrestrial ecosystem modelling with O₂

Methods – site description – Agricultural site

Picture from Ana Meijide

 \rightarrow monocropping agric. system with annually varying crop rotation (2023

 \rightarrow conventional soil cultivation (deep tillage, fertilisation)

 \rightarrow 80% clay, clayey loams

Methods – measurements: Measure at 0.5, 1 and 3 m agl

Methods – O₂ and CO₂ measurements

FC-2 Differential Oxygen Analyzer (Oxzilla)

- air dried to < 1 ppm H_2O_v
- flow rate of 0.1 Lpm
- 3 heights are sequentially switched with 8-port Valco valve for 5 minutes each
- 1 minute averages
- 1 minute removed

'Blue-box' with calibration cylinders

LI-820 CO₂ gas analyser (LI-COR)

 \rightarrow O₂ and CO₂ mole fraction are anticorrelated

Results $-O_2$:CO₂ exchange ratio July 2023 from mole fractions at three heights (day and night)

 \rightarrow O₂:CO₂ exchange ratio closer to -1.1 with increasing height

Results – O₂ and CO₂ net fluxes from K-theory and EC (median diel cycle)

 \rightarrow O₂ and CO₂ fluxes from same method (K-theory) are anticorrelated and follow same variability

 \rightarrow CO₂ fluxes from EC show higher resiration than from Ktheory, photosynthesis rates similar

Something strange happens at sunrise and sunset... Otherwise, ER ~1.1

Talk outline

- Introduction to OXYFLUX project
- Stem chamber measurements
- Branch chamber measurements
- Vertical gradient measurements
- Terrestrial ecosystem modelling with O₂

"CANVEG"

- 1-dimensional, multi-layer atmosphere-biosphere gas exchange model
 - Baldocchi, 1997: doi:10.1046/j.1365-3040.1997.d01-147.x
 - We added O_2 fluxes to the model, to study ER
 - $ER_{eco} = ER$ of entire ecosystem
 - = 1.06 to 1.12 mol mol⁻¹
 - $ER_{conc} = ER$ above and within the canopy
 - = 1.12 to 1.15 mol mol⁻¹
- Re-examined the holy grail goal, with this model:
 - Concluded that it *is* possible to partition CO₂ fluxes into photosynthesis and respiration, if we measure O₂ fluxes and we know ER_{eco}.
 - But some further improvements in O₂ instrument precision needed for results to be meaningful.

CANVEG ER results: seasonal and diel variations

WAO4 Workshop, Brunswick, USA, 23-25Aug2023

Conclusions

- Terrestrial ecosystem O₂ measurements are even harder than "traditional" atmospheric O₂ measurements!
- There are some very strange results in previous literature, which we believe are likely large measurement artefacts because of researchers being unaware of the many challenges of high-precision O₂ measurement.
- Our provisional results suggest:
 - ARQ from stem respiration ~1.0 mol mol⁻¹ (much greater than previous literature; in line with theory)
 - Leaf-level ER ~0.9-1.0 mol mol⁻¹ (complicated analysis owing to non-steady state)
 - Soils? TBD. Complicated further by diffusion, pressure gradients, calcareous soil
 - Vertical flux gradient measurements promising as eddy covariance alternative
 - ER ~1.18 mol mol⁻¹, seasonally varying with crop development (probably fossil influence which needs to be removed...)

Andrew Manning, UEA/ENV (a.manning@uea.ac.uk)

WAO4 Workshop, Brunswick, USA, 23-25Aug2023