What have we learned from atmospheric measurements of carbon isotopes and O₂/N₂ And what could we do next? Ralph Keeling Scripps Institution of Oceanography Andrew Manning Schoo of Environmental Sciences University of East Anglia #### Deseasonalised O₂/N₂ ratio at La Jolla © Bill Watterson, Calvin and Hobbes. #### Projected Decreasing Trend in Atmospheric Oxygen ### Atmospheric CO₂ budget ### Atmospheric CO₂ & O₂ budgets Atmospheric CO₂ & O₂ budgets ### Atmospheric O₂/N₂ applications - Original motivation: separate and quantify land and ocean sinks. Limited by uncertainty in ocean O₂ flux, Z. - Emergent application: solve for ocean O₂ flux Z, by building on improved estimates of ocean carbon sink. #### Ocean De oxigie atition Models suggest global warming will reduce dissolved O_2 levels in the ocean interior (1 to 7% loss in total inventory by 2100). #### Causes in models: - (1) Warming reduces O₂ solubility - (2) Warming increases upper ocean stratification, reducing ventilation rates #### Potential consequences: - (1) Expanded O₂ minimum and "dead" zones - (2) Impacts on fisheries - (3) Interaction with N, P, C, & trace element cycles #### **Evidence for deoxygenation:** - (1) Repeat hydrography shows declines in North Pacific, Tropics and Antarctic zones) - (2) Atmospheric O_2 budget seems to require Z>0, but with large uncertainty. ## $\delta^{13}C$ trends at Mauna Loa and the South Pole ## Atmospheric ¹³CO₂ budget Atmosphere Fossil-fuel burning $$\delta_F \approx -28\%$$ $\delta_{\text{atm}} \approx -6.3\%$ in 1800 $\approx -8.2\%$ today $$\begin{split} [CO_2] d\{\delta_{atm}\}/dt &= F \left(\delta_F \text{-} \delta_{atm}\right) \\ &- O \ \epsilon_{ao} - B \ \epsilon_{ab} \\ &+ G \end{split}$$ "Iso-flux" term ## Atmospheric ¹³CO₂/¹²CO₂ applications - Original motivation: separate and quantify land and ocean sinks. (Large uncertainties in isofluxes limited this application to El Niño time scales). - Emergent application: resolve changes in ϵ_{ab} , related to shifts in water-use efficiency. ## Atmospheric ¹⁴CO₂ trends ## Atmospheric ¹⁴CO₂ budget Land photosynthesis & respiration Sources: Weapons testing Cosmic ray spallation Sinks: Radioactive decay (slow) Isotope fluxes with land and oceans Dilution by fossil-fuel carbon ## Atmospheric ¹⁴CO₂ applications - Original motivation: tracing nuclear bomb fallout. - 1970-present motivation: determine air-sea exchange rates and ocean mixing rates. - Emergent application: constraining fossil-fuel burning. ## How applications of atmospheric measurements have evolved: - Measurements of O_2/N_2 , $^{13}CO_2/^{12}CO_2$, $^{14}CO_2/^{12}CO_2$ provide constraints on many processes acting simultaneously. - The "hottest" application has always been to solve for the least known process in terms of all the others. - This is a moving target, depending on which processes are known well independently. ### How the playing field may change: "Until now, there has been no financial penalty for producing emissions and no benefit from carbon sequestration. Now that money enters the picture, so also can fraud." - Euan Nisbet (Nature, 433, 2005) ### How the playing field may change: Old Maths: $$\Delta CO_2 = F - O - B$$ New Maths?: $$\Delta CO_2 = F - O - B$$ #### **New Maths Needs:** - Land and ocean observing systems. - Atmospheric observing system with multiple tracers. - Mesoscale transport modelling for regional verification. ## Example: Atmospheric verification of carbon capture and storage #### Carbon capture signature: CCS: O₂ loss (from combustion) without normal CO₂ release. DAC: CO₂ sink with no O₂ change. #### Leakage signature: CO_2 source with no O_2 change. ## Example: Atmospheric verification of carbon capture and storage ## Example: Atmospheric verification of carbon capture and storage #### **Conclusions:** - Atmospheric measurement is an extremely powerful tool for improving understanding of the Earth System. - The longer the time series (e.g. multiple decades), the more valuable the record. Funding agencies take note! - "Best" application of these measurements changes over time: - O_2/N_2 : quantify ocean O_2 flux (Z). - ¹³CO₂/¹²CO₂: resolve changes in ε_{ab}, related to shifts in water-use efficiency. - ¹⁴CO₂: constraining fossil-fuel burning. #### **Conclusions:** - Emerging financial and political incentives for fraud in reporting emissions - → Measure the atmosphere (+ oceans) it can not lie. - Emerging importance for quantifying regional emissions - → Requires higher density observation networks and improved high resolution models. - Using O₂/N₂ measurements to check for carbon capture and storage efficiency and leaks. - Questions?: O₂/N₂ Andrew Manning ¹³CO₂ Philippe Ciais / Euan Nisbet ¹⁴CO₂ Ingeborg Levin / Martin Manning rkeeling@ucsd.edu