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Atmospheric Oxygen (%)
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Atmospheric CO, budge
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Atmospheric CO, & O, budgets
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Atmospheric CO, & O, budgets
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Atmospheric O,/N, applications

 Original motivation:
separate and quantify land and ocean sinks.
Limited by uncertainty in ocean O, flux, Z.

 Emergent application:
solve for ocean O, flux Z, by building on
Improved estimates of ocean carbon sink.




OOeanrRoigeattion

Models suggest global warming will reduce dissolved O,
levels in the ocean interior (1 to 7% loss in total inventory by 2100).

Causes in models:
(1) Warming reduces O, solubility
(2) Warming increases upper ocean stratification, reducing
ventilation rates

Potential consequences:
(1) Expanded O, minimum and “dead” zones
(2) Impacts on fisheries
(3) Interaction with N, P, C, & trace element cycles

Evidence for deoxygenation:
(1) Repeat hydrography shows declines in North Pacific, Tropics
and Antarctic zones)
(2) Atmospheric O, budget seems to require Z>0, but with large
uncertainty.




&513C trends at Mauna Loa and the
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Atmospheric 3CO,, budget

Atmosphere
Land photosynthesis & respiration S = -6.3%0 in 1800
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Atmospheric 3CO,/**CO, applications

 Original motivation:

separate and quantify land and ocean sinks.
(Large uncertainties in isofluxes limited this
application to El Nifio time scales).

* Emergent application:
resolve changes in €_,, related to shifts in
water-use efficiency.
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Atmospheric 14CO, trends
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Atmospheric *CO,, budget

Land photosynthesis & respiration Sources: Weapons testing

Cosmic ray spallation
L=

/ Sinks:
S
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Radioactive decay (slow)
Isotope fluxes with land and oceans
Dilution by fossil-fuel carbon




Atmospheric *CO, applications

 Original motivation:
tracing nuclear bomb fallout.

* 1970-present motivation:
determine air-sea exchange rates and
ocean mixing rates.

 Emergent application:
constraining fossil-fuel burning.




How applications of atmospheric
measurements have evolved:

* Measurements of O,/N,, 13C0O,/1?CO,,
14C0,/12C0O, provide constraints on many
processes acting simultaneously.

* The “hottest” application has always been to
solve for the least known process in terms of
all the others.

* This is a moving target, depending on which
processes are known well independently.



How the playing field may change:

“Until now, there has been no financial
penalty for producing emissions and

no benefit from carbon sequestration.
Now that money enters the picture, so
also can fraud.” - Euan Nisbet (Nature, 433, 2005)



How the playing field may change:

Old Maths:  ACO,=F -0 -B
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New Maths Needs:

* Land and ocean observing systems.

« Atmospheric observing system with
multiple tracers.

* Mesoscale transport modelling for
regional verification.



Example: Atmospheric verification
of carbon capture and storage

Carbon capture signature:

CCS: O, loss (from combustion)
without normal CO, release.
DAC: CO, sink with no O, change.

| eakage signature:

CO, source with no O, change.



Example: Atmospheric verification
of carbon capture and storage
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Example: Atmospheric verification
of carbon capture and storage
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Conclusions:

* Atmospheric measurement is an extremely powerful tool
for improving understanding of the Earth System.

* The longer the time series (e.g. multiple decades), the
more valuable the record. Funding agencies take note!@

 “Best” application of these measurements changes over
time:
* O,/N,: quantify ocean O, flux (Z).
« 13CO,/1°CO,: resolve changes in ¢, related to shifts
in water-use efficiency.
« 14CO,: constraining fossil-fuel burning.



Conclusions:

* Emerging financial and political incentives for fraud in
reporting emissions
- Measure the atmosphere (+ oceans) — it can not lie.

« Emerging importance for quantifying regional emissions
- Requires higher density observation networks and
improved high resolution models.

 Using O,/N, measurements to check for carbon capture
and storage efficiency and leaks.

* Questions?:  O,/N, — Andrew Manning
13CO, — Philippe Ciais / Euan Nisbet
14CO, — Ingeborg Levin / Martin Manning
rkeeling@ucsd.edu
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