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How well do “bottom-up” estimates of greenhouse
gas emissions agree with “top-down”
measurements of their accumulation in the global

atmosphere ?

Three comparatively straightforward test cases...



Global Trends of the PFC Carbon Tetrafluoride* (CF,, GWP=7,400)
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*Muhle et al., Eos Trans. AGU, 2009; Atmos. Phys. Chem. Discuss, 2010



Reported CF, Emissions Compared to Global Atmospheric Measurements
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Global Trends and Emissions of Nitrogen Trifluoride *
(NF; ,GWP = 17,000)
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e = 2006 “Bottom-Up” Estimate * Weiss et al.,, Geophys. Res. Lett., 2008



Global Trends of Sulfur Hexafluoride* (SF,, GWP=22,800)

r-~~r-rr 1 r 11 1

AGAGE Archive and In Situ Data

U B o
I I |

(X
|

SFg mole fraction (pmol mol™)

NH
CGO

- MOZART/EDGAR v4
MOZART/Optimized emissions

=)
L
o o

Lol
=+ BJ bk
mowu

0.10
0.05

1970 1980 1990 2000 2010

I

Growth rote
(prmol mol™'yr™")

*Rigby et al., Eos Trans. AGU, 2009; Atmos. Phys. Chem. Discuss, 2010



SF¢ Emissions Reporting Compared to Global Atmospheric Measurements
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REGIONAL OPTIMAL SOURCE/SINK ESTIMATION USING
MEASUREMENTS,
PROCESS MODELS & 3D GLOBAL CIRCULATION MODELS

Whether Emission
Reductions are
claimed through Cap
& Trade, Taxes, or
Mandates,
Reliable Estimates of
Anthropogenic
Emissions of
Greenhouse Gas
Emissions are
ESSENTIAL

rprinn@mit.edu

How accurate/precise
do the measurements
need to be?

How accurate/precise
do the models
need to be?

What statistical methods
are available & what should
the criteria be for
defining optimal?

Are current capabilities
adequate to verify
emission claims?
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HOW
ACCURATE DO
THE
CIRCULATION
MODELS NEED
TO BE?

Chen & Prinn,
J. Geophys. Res., 2005
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HFC-134a at two Remote Measurement Stations (CH,FCF,, GWP= 1,430)
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HFC-134a Northwestern European Emissions: Modeled *
AGAGE Atmospheric Measurements at Mace Head, Ireland (2005-08)

(Per Capita and UNFCCC Reported Emissions Agree Within the ~35% Modeling Uncertainty)

Maximum value = 1.004 ng/m’/s
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* Manning et al., Eos Trans. AGU, 2008 (UK Met Office Lagrangian Model)



2001 European Methane Emissions (CH, , GWP = 25)
from a 1° Nested Atmospheric Model *
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2001 Estimated European Union (EU-15) Methane Emissions in Tglyr

B UNFCCC (EEA, 2003)

UNFCCC (EEA, 2004)

B Bergamaschi et al.
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*Bergamaschi et al., Atmos. Chem. Phys.,5, 2431-2460, 2005




The Estimation Challenge

| Optimal Estimation Method | _ predictions of Concentrations,
~p{ for Emission Parameters —

Emission Parameters,
Corrected Sensitivities to Emission Parameters
Emission ,
Parameters —‘ Atmospheric Greenhouse Gas Measurements Global 3D
Atmospheric
Surface Emissions Models (uncertain parameters) [==—— Transport
Models

Alternative Structures Atmospheric Chemistry Models R

Analyzed Observed Winds 4
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Summary: Present Status

e There are large discrepancies for some greenhouse gases (GHGs)
between global “bottom-up” emissions inventories and “top-down”
global emissions as determined from atmospheric measurements.

e Under-reporting of GHG emissions appears to be more common than
over-reporting, although both exist. Various factors may tend to bias
toward under-reporting, including the price of emissions in carbon-
equivalent trading markets and possible unidentified sources.

e Realistic regional emissions patterns, total emissions and trends can
be obtained from high frequency measurements at ground based
stations coupled with atmospheric inverse modeling, even when the
measurement locations are sparse and are not optimally chosen, but
these results do not yet meet the needs of verifying enacted emissions
reduction legislation.

e Inverse models are able to assimilate measurements from many
atmospheric measurement stations, thus greatly reducing uncertainties
in regional emissions estimates.



Summary: Future Outlook

e There is a compelling need for increased spatial and temporal
resolution of high-precision atmospheric GHG measurements, including
isotopes to resolve the roles of different anthropogenic and natural
processes. Modeling will continue to improve, but measurements
cannot be made retrospectively.

e Improvements in inverse modeling are needed, including modeling of
natural processes, in order to assimilate atmospheric GHG
measurements and quantify regional emissions with sufficient accuracy
to verify legislation.

e Optimal estimation and statistical methods, incorporating all
information weighted by precision and accuracy, should provide a
structured path to the convergence of “top-down” and “bottom-up”
emissions estimates that will be required for effective implementation.

e Improved verification, achieved by investing a very small fraction of the
current $100 billion investment in global carbon-equivalent trading
markets, can play a significant role in stabilizing these volatile markets
and thus in accelerating investment in emissions reductions.
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