Sub-Mesoscale turbulence in the ocean:
How does it affect oceanic pCO2 ?
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« The ocean plays in important role in mitigating climate change
taking up nearly 30% of anthropogenic CO, emissions (Le Quéré
et al., 2009)

* The direct estimation of the air-sea flux of CO, requires a precise
evaluation of the oceanic pCO, at the sea surface

- pCO, = (DIC, T, ALK, S)

» pCO, responds to various processes :
» Physical : mixing, upwellings, water mass formation
= Biological: photosynthesis, respiration

| Oceanic pCO, is highly variable in space and time
over a wide range of scales




Large-scale, seasonal patterns of oceanic pCO2
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Resolution : 4° (latitude) x 5° (longitude) x 1 month

500 km x 500 km grid cells
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Sub-grid variation of oceanic pCO2 (< 1°, < 1 month)

Carioca floats

POMME experiment (2001) S .
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POMME domain: 7° x 5°

Challenging to observe: often undersampled, uncertainties in climatologies



VIO TIVATION

Oceanic Mesoscale and sub-mesoscale turbulence

Can be observed with satellites (altimetrie, SST, Ocean Color)

Longitude

NOAA AVHRR | SST

Baroclinic instability of large-scale fronts (like the Gulf Stream)
Oceanic eddies (100 km, months)

Sub-mesoscale filaments (10 km, days)



Oceanic turbulence in numerical models

Requires fine (2 km) horizontal grids

Challenging to model: often omitted

Climate models Global Ocean models Regional Ocean models

X 1.e5 computing time
Lévy et al., OM, in revision



Outline

1. Processes: how sub-mesoscale physics affect oceanic pCO,

2. Quantification: errors due to undersampling in data, in models

—— Vertical processes
Horizontal processes



Vertical velocities

Sub-mesoscale filaments are associated with intense vertical velocities :
20-100 m/day !

Observation
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Impact on primary production

Nitrate[uM]

Nitrate observations in the oligotrophic
‘ North Pacific Gyre (vicinity Hawaii)
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Enhancement of primary production through upwelling of limiting nutrients
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Quantification of Primary Production increase with a model

|ldealized model with horizontal resolution of 2 km
Extreme situation: highly oligotrophic, strong W
Spin-down of a front generating transient sub-mesoscale vertical transport

Primary Production

With eddies + HF wind : X 3

Inertial wind

Constant wind

With eddies : X 2

mmoleN/m2/day

No Wind

No eddies

01 02 03 04 05 06 07 08 09 10

Days Levy et al., GRL, 2009



VERTICAL PROCESSES

Impact on pCO2 ?
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DIC SST pCO2

pCO2 variance :
< 5 uatm

60 100 14

0 20 60 100 140
SST Doy 30 (d) bio, wind=0.3d/cm?
meon=354.9, ronge: 350.3-357.5

Mahadevan et al. 2004

Strong impact of sub-mesoscale upwelling on PP but weak impact on pCO2 :
Compensating effects between : lowered T, increased DIC

General feature or specific to the NE Atlantic ?
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Variations of T, DIC, ALK and S are assumed to result from vertical mixing (K)
at the base of the mixed-layer (H) + Sources/sink terms S

Framework also applies to other episodic events : storms, hurricanes



Potential change of pCO2 due to small scale upwelling

ApCOs
pCO2s

TEMP effect

DIC effect

ALK effect

NOgjeffect

Estimate the different effects using available climatologies:
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-De Boyer Montegut Mixed-layer depth climatology
-Levitus climatology for T, S, NO3
-GLODAP climatology for DIC, ALK

TEMP effect + DIC effect + ALK effect + BIO effect

K strength of mixing
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Global estimate of % pCO, change due to localized upwelling
% calculated for a given strength of mixing k=1.e-3 m2/s2 and for At= 1 day
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-Net response of pCO, to localized mixing is highly variable in space and time
-Large areas show little sensitivity due to compensating effects
-Some regions indicate an increase in pCO,, others a decrease

-Large seasonality
-Contrasting responses can occur in proximity (+/- 40 uatm)

-Large sensitivity along eastern equatorial margins (up to +/- 60 uatm)



Today and tomorrow

Today’s Ocean: DIC (yellow) effect is dominant :
Submesoscale upwelling increases pCO2 in yellow regions, decreases pCO2 in blue regions
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This effect is very likely to change in a warmer, higher CO, world :

-Decrease of vertical DIC gradient due to uptake of anthropogenic CO2
-Increase of T gradient due to warming at the surface
-Increase of stratification

Possible change of sign and lowering of the effects of localized upwelling in the future



Horizontal stirring

Advection of a passive tracer
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HORIZONTAL PRC

Regional model study of the POMME experiment
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Spring bloom
Numerous mesoscale eddies
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POMME program
(field work: 2001)
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Regional model constrained with POMME observations
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¢) SUBMESO April 18

d) SUBMESO April 23
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POMME model results

Seasonal drawdown associated with the bloom
Weakly energetic area : W < 5 m/day

Large pCO, gradients (30 uatm over 10 km)
generated by horizontal stirring

pCO2 variance :
> 20 natm

Resplandy et al., GBC, 2009



Evaluation of undersampling errors due to horizontal stirring

Strong space and time variations: difficult to sample
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Network sampling: 3 weeks, 50 km between stations

-> 10 to 30 % error on air-sea CO2 flux due to undersampling

Resplandy et al., GBC, 2009



Evaluation of model errors due to horizontal stirring
¢) SUBMESO May 16 ) SMOOTH May 16
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Weak modifications of mean model-predicted pCO2 (< 5 %) :

Because the changes are due mostly to redistribution on the horizontal by stirring
(small contribution of vertical advection)

Resplandy et al., GBC, 2009



Summary

Sub-mesoscale physics affect oceanic pCO, through :
-Vertical advection of T, S, DIC, ALK, NO,
-Horizontal stirring of adjacent water masses with different properties

Impact of Vertical advection on pCO,

*Weak because of combined effects that cancel each other (T and DIC)
-Large in some specific regions and with opposite signs

+Likely to change in the future

Impact of Horizontal stirring on pCO,

Large: generates very strong inhomegeneity of pCO,

*Source of errors in the estimation of air-sea CO, fluxes from
observations

*Small source of errors in models



Concluding remarks

Sub-mesoscale variability is responsible for large uncertainties in oceanic
pCO2 estimates, both from observations and from models

Quantification of these uncertainties in under way: highly variable regionally
Potential for reducing these uncertainties in the next 20 years by :

Expanded surveys
Higher - resolution models





