O

Greenhouse gases in the Earth system:
a palaeoclimate perspective

Eric Wolft

British Antarctic Survey, High Cross, Madingley
Road, Cambridge CB3 OET, UK

(ewwo(@bas.ac.uk)

British
Antarctic Survey

MATURAL ENVIROMMEMT RESEARCH COUNCIL


mailto:ewwo@bas.ac.uk

Why palaco greenhouse gases?

What happened before regular atmospheric
measurements started?

How do recent changes compare with natural
variability?

Can we understand natural cycles — important if we
want to underpin estimates of (future) feedbacks
How did Earth respond to high CO, climates?

Can we find analogues for large carbon releases 1n
the past, to test effects and recovery?
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Cracker measurement procedure

Vacuum pumps

Measuring Cell

.

Water trap

N, - flushing

* It CO, n air

e

Water trap

standards

Courtesy of Dieter Liithi (Bern)
Please do not re-use without
permission



Cracker measurement procedure

Vacuum pumps
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Cracker measurement procedure

Vacuum pumps

Detector Measuiing Celil Laser
B 7 Dt
Water trap X
N, - flushing
v *
A ] CO, n air

P<
@ standards

Water trap

(Note: other extraction procedures are also used)



Validating 1ce core measurements

1850 1860 1970

yaar AD

Etheridge et al (1996), JGR 101, 4123



The basic argument of
greenhouse warming

* Physics tells us that increasing the
concentrations of greenhouse gases traps
heat and requires climate on average to
warm

* The concentration of major greenhouse
gases has increased significantly due to
human activities



Recent past — CO,

Mauna Loa atmospheric

Law Dome (Etheridge et al., 1996)
Siple (Friedli et al., 1986)

EPICA DML (Siegenthaler et al., 2005)
S. Pole (Siegenthaler et al., 2005)
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Recent past - methane

MacFarling Meure et al. (2006); Etheridge et al. (1998)
Ice and firn air
Line is Cape Grim air
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The atmosphere over the past 250 years
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Greenhouse gases

Gas Pre-industrial |Present-day
CO, 275-284 ppmv | 388 ppmv
CH, ~750 ppbv ~1800 ppbv
N,O ~270 ppbv 322 ppbv




Greenhouse gases over the Holocene (10 kyr)
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= Law Dome (Etheridge et al., 1996)
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Slow/small increase: natural or anthropogenic?
Ruddiman 2003 (Clim. Change, 61, 261-293)
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Estimated Antarctic temperature
(based on water 1sotopes)
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EPICA Community Members, Nature, 429, 623-628, 2004;
Jouzel et al., Science, 2007



What does CO, do 1n a changing climate?

Lithi et al., 2008
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- CO, responsible for 30-50% of the glacial-interglacial warming
- probably controlled mainly through processes in the Southern Ocean
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CO, / climate phasing
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Luthi et al., 2008
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Monnin et al (2001)
Science 291, 112-114

Phasing is
consistent with CO,

as an amplifier
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But we are out of the range of the last 800 ka

| Lﬁthi ét ai., Natﬁre QOOS (EPICA gas'cor'lsoftiur'n)

400
Age / ka (b1950)
 In rate as well as concentration:

— Fastest multicentennial rate in last termination was ~20 ppmv in
1000 years

— 20 ppmv increase in last 11 years




Loulergue et al, 2008, Nature

Jouzel et al 2007
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But the late Pleistocene holds no
analogue for the present

Loulergue et al, 2008, Nature

Jouzel et al 2007

J

400 600
Age / EDC3 ka before present
And natural changes are dwarfed by the anthropogenic influence




Rapid events in CH,
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Causes of change (CH,)

Sources Sinks
Wetlands * OH change
— Northern * Temperature
— Tropical

* Water vapour
Methane hydrates  Competition

Biomass burning (VOCs)
Others (vegetation,....)

Isotopic evidence suggests no major role for hydrates, and
perhaps biomass burning
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N,O also lower 1n cold periods
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Glacial/interglacial change

* Response of CO, exchange with Southern
Ocean needs to be understood

* Response of wetlands and or other
sources/sinks to changing climate — larger
than expected

JWhat can we learn from warmer climates
and deeper time



Last interglacial — how did CH,
react to Arctic warmth?

\EPICA Dome C .

50 100
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Deeper time

Geologic record
generally indicates that
periods of higher CO,
were warmer and with
less ice on Earth. But

substantial difficulties in
clearly defining the
palacogeography, climate
or CO, content further
back in time
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CO, control of onset of glaciations?

Late Pliocene (~3 Ma ago)

Closure of Tectonic
Panama seaway c i

Termination of Decrease in
permanesnt El Mifo CO,

DJ Lunt et al. Nature 454, 1102-1105 (2008)
doi:10.1038/nature07223
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Summary

Ice cores show us the unprecedented extent and
rate of the recent increase 1n greenhouse gases and
therefore radiative forcing

Large changes 1in Quaternary challenge us to
understand natural cycles and test our knowledge
of feedbacks (especially wrt ocean carbon and
wetland methane)

Last interglacial might be used to seek reassurance
against large methane releases under warming

State of the planet in other warm periods as a
model test

PETM: model system for large carbon release?
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