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Why estimate regional or country 
emissions from observations?

• As part of the UNFCCC (United Nations Framework Climate Change 
Convention) each developed country has to report its annual 
anthropogenic emissions of a range of greenhouse gases (GHG).

• CO2 , CH4 , N2 O, HFCs, SF6 , PFCs

• Traditional inventory approach (‘bottom-up’).
• Combines Activity Data (activities that result in the emission of a GHG e.g. 

landfill waste) and Emission Factors (links a specific activity to an emission).
• Sum emissions per sector (industry, agriculture, energy, waste, etc) per gas to 

estimate an annual country GHG emission total.

• Emissions from observations: Inversion modelling (‘top-down’).
• Challenge traditional emission inventories.
• Completely independent.
• Best practice for Kyoto Protocol although not mandatory.

• Both bottom-up and top-down methods have uncertainty.
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Inversion modelling

• Information required:
• How emissions dilute in the atmosphere as they travel from a source 

region to an observation point.

• Atmospheric transport (dispersion) model underpinned by 
meteorology.

• Precise observations preferably at high temporal resolution.

• Output:
• Spatial distribution and magnitude of emissions.

• Challenge:
• Maximising the match in concentration between the modelled 

(estimated given an emission map) and measured (truth) time-series. 



© Crown copyright   Met Office

Comparing measured and modelled 
time-series of concentration

• Inversion Model 

• Uses a grid of emissions, fixed within a time frame (emission map).

• Estimates the contribution each grid makes to an observation in each time period. 

• Uses a dispersion model and modelled meteorology.

• Sums contributions from each grid to estimate total time-series of concentration.

• Searches for the emission map that produces model time-series that has the best 
statistical match to the observed time-series.

• Statistical Match

• What statistical function to use to measure the quality of the fit?

• Common functions (there are many more): 

• root mean square error (RMSE), 

• correlation coefficient (r),

• fraction within a factor of two (FAC2) .

• Each statistic has strengths but also some weaknesses.
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Simple artificial examples of 
statistical measures

Near-Perfect Match
r=1, RMSE=0.1, Fac2=1

One point amiss
r=-0.3, RMSE=4, Fac2=0.95

Model just 
under half 
observations
r=1, 
RMSE=1.2, 
Fac2=0

One point 
amiss
r=1, 
RMSE=4.2, 
Fac2=1
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Additional knowledge can help 
the inversion

• Inversion models can use additional information to better constrain the 
emission map. 

• E.g. knowledge about how the emissions are distributed (a priori).

• An emission map is penalised for moving away from the a priori.
• I.e. the benefit in terms of a better time-series fit needs to outweigh the penalty of an 

emission map more distant from the a priori.

• How to price the distance from the a priori solution relative to the statistical fit 
of the modelled time-series to the observations?

• related to the perceived quality of the a priori (subjective).

• Usually defined as a percentage relative to the a priori solution, e.g. 100% 
uncertainty.

• If a priori estimate is small this does not give much leeway.

• New or unexpected sources or those significantly different from the a priori estimate 
struggle to be seen in the inversion.

• A good a priori estimate can significantly improve the robustness of the final 
solution. A poor one is detrimental.

• If inventory data used then inversion solution is not independent.
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Transport (dispersion) model

• Critical component of inversion system.

• Describe how emissions dilute with distance and where they go.

• 2 components: Meteorology and Dispersion.

• 3-D wind, temperature and boundary layer information on 
a grid from Numerical Weather Prediction (NWP) models.

• Use short-term forecast 0-3 hours corrected for by observations.

• Resolution varies between models (25-80 km globally up to 1.5 km 
country scale).

• NWP models do not ‘see’ everything. Sub-grid features not 
represented, i.e. sharp changes in orographic features e.g. steep 
mountains, valleys or coasts. NWP ‘sees’ average flow in grid.
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Location of measurement station 
matters

• Flat terrain sites are usually ideal as the flow well 
represented by NWP.

Cabauw Tower
The Netherlands
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Location of measurement station 
matters

• Coastal stations are affected by (sub-grid scale) land-sea 
breezes but benefit from a ‘clean’ well mixed sea sector.

Mace Head
West coast Ireland
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Location of measurement station 
matters

• Elevated observations (tower) 
more representative of grid 
average.

• Ground is heterogeneous and thus 
complex. 

• Potentially difficult to decide 
whether measurement within 
Boundary Layer (BL) or not (profile 
of observations valuable for this).

• BL notoriously difficult to estimate 
in NWP models.

Angus Tower, Scotland, UK
222 m
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Location of measurement station 
matters

Stations in mountainous areas are very challenging!

Jungfraujoch station in the Swiss Alps.
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Where is the measurement 
station?

• Which point in 3-D model atmosphere is most representative 
of the observed air?

• Surface station at 
Jungfraujoch in the Alps 
(3580 m asl).

•On saddle between two 
mountains with valleys on 
either side.
• UK Met Office global 
model 40 km: ground level 
= 1760 m.
• UK Met Office North 
Atlantic European model 
12 km: ground = 2110 m.
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Where is the measurement 
station?

• Night - flow reaching the station probably disconnected from 
ground (above boundary layer [BL]) and best represented by 
a model point at 3580 m a.s.l. (i.e. 1.8 km above global 
model ground).

• Day - station probably influenced by upslope surface winds 
from the valleys and best represented by model point on the 
model ground.

• When does it switch?

• Difficult to model => Challenging to interpret observations.
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Impact of station location

• Difference between 
whether modelled 
Jungfraujoch is on ground 
or above BL is significant.

• Surface regional emissions 
more readily impact station 
when modelled on the 
ground.

• Strong impact on inversion 
solution.

• Smaller impacts in less 
severe topography.

Annual difference of more 
than 400 3-hr periods
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Resolution of inversion solution

• Inversion emission map has a defined horizontal grid and a specified 
time window. During this time emissions are assumed constant in 
each grid.

• Intermittent emissions or large sources near to the monitoring station 
will cause problems for inversion.

• Incorrectly placed emissions will lead to over- or under- estimates.

Local 
source

Station
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Resolution of inversion solution

Wind

High 
Observation

• Inversion emission map has a defined horizontal grid and a specified 
time window. During this time emissions are assumed constant in 
each grid.

• Intermittent emissions or large sources near to the monitoring station 
will cause problems for inversion.

• Incorrectly placed emissions will lead to over- or under- estimates.



© Crown copyright   Met Office

Resolution of inversion solution

• Inversion emission map has a defined horizontal grid and a specified 
time window. During this time emissions are assumed constant in 
each grid.

• Intermittent emissions or large sources near to the monitoring station 
will cause problems for inversion.

• Incorrectly placed emissions will lead to over- or under- estimates.

Wind

Low
Observation

Wind

Wind
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Resolution of inversion solution

• Inversion emission map has a defined horizontal grid and a specified 
time window. During this time emissions are assumed constant in 
each grid.

• Intermittent emissions or large sources near to the monitoring station 
will cause problems for inversion.

• Incorrectly placed emissions will lead to over- or under- estimates.

Larger 
emission 
estimated 

further 
from 

station

Greater distance = Greater dilution
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Selecting the observations to use 
in the inversion

• Increasing the number of observations can help the inversion model 
(better triangulation).

• Flask (weekly) to high-frequency (hourly).

• Observations from multiple measurement stations.

• Improves knowledge about the distribution and magnitude of sources.

• Multiple stations – Are the observations inter-comparable? Would 
both instruments measure the same value if side by side?

• Removing observations that maybe too challenging to model e.g. 

• low wind speed conditions (local sources dominate).

• day time values in mountainous areas (flow complex).
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Uncertainty in inversion models

• Sources of uncertainty:

• Observation error,

• Error in modelled meteorology,

• Error in the transport and dilution of pollution.

• Error in inversion method (statistical fit)

• Difficult to assess the total uncertainty but vital to try. Possible ways 
to test robustness of inversion solutions:

• Randomly perturb or randomly sub-sample observations,

• Use multiple NWP models (ensemble),

• Use multiple inversion methods (inversion ensemble),

• Change uncertainty level when using a priori information.
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Examples of inversion modelling

• NAME-inversion method:
• Example: HFC-134a. 
• Principle use: mobile (car) air conditioning units.

• NitroEurope 5-year EU project:
• Multiple inversion models.
• Example: CH4 (methane).
• Principle emissions: farming, waste, energy.
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NAME-inversion method

• NAME model (Lagrangian particle 
dispersion model).

• Uses 3D meteorological data from 
UK Met Office NWP and ECMWF 
models (40-80 km resolution).

• Derive air history map for Mace 
head for a 3-hour period:

• Combination of tens of thousands 
of trajectories.

• Darker shade means greater 
contribution from that area.

• All surface sources within previous 
12 days of travel that contribute to 
an observation during a 3-hour 
period are recorded.

Maps generated for each 
3-hour period:
• 1994 onwards

Mace Head
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HFC-134a 
Northern Hemisphere baseline

• Select observations when air come from Atlantic and wind speed high.
• Smooth ‘baseline’ data and derive Northern Hemisphere background 
concentration. 

Mace Head data (AGAGE) from Simon O’Doherty at Bristol University
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Regional emissions produce 
observations above baseline

Aim: Generate emission estimates from ‘polluted’ (above 
baseline) observations.

Subtract the baseline concentration from each observation. 
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What regions influence Mace 
Head?

Composite of air-history maps.
Greatest influence: Ireland, UK, northern France 
and Benelux countries.
Lesser influence: southern France, Germany, 
Denmark.
Poor influence: Mediterranean countries.

Increase size of solution 
grid as influence on Mace 
Head decreases.
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Measurement - Baseline = m
Emission Map = e (the solution)
Relationship: A e = m
Problem: Minimise  m - A e

Air Origin Map = Matrix A
(No times x No grids)NAME-inversion 

technique

• Remove observations that have a strong local influence.
• Scale emissions (iteration) to obtain best-fit statistical match between 

model time-series and observations.
• No prior information – Random initial guess.
• Solve for each 3-yr period iterating monthly e.g. Jan’05 – Dec’07, Feb’05 – Jan’08, …

• Repeat multiple times, each time start from different random initial guess.
• Apply random ‘noise’ to observations (different for each inversion).
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NAME-Inversion Results: 
HFC-134a

Mean emission 
distribution of HFC- 
134a that best fits the 
observations:
May 2006 – April 2009.
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HFC-134a emissions:
N.W. Europe

NAME-inversion estimates with uncertainty

Inventory estimates (UNFCCC 2009)
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NitroEurope: CH4 inversion 2006

preliminary results
Observations: ECN,  HMS,  UEDIN, CIO-RUG, 
RHUL, FMI, UBA(D), EMPA, AGAGE, ENEA, NOAA 

JRC UKMET

LSCE ECN
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Conclusions

• Inversion models can be used to estimate regional 
emissions.

• Compare with existing inventories.

• Investigate compliance (verification).

• Important issues to consider:

• Statistical measures, a priori knowledge, dispersion and 
meteorological models, location of measurement station, local 
emissions, observations data selection.

• Uncertainty in methodology.
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