

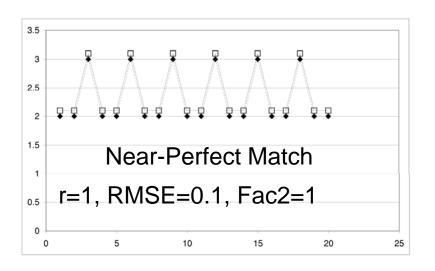
The challenge of estimating regional emissions from observations

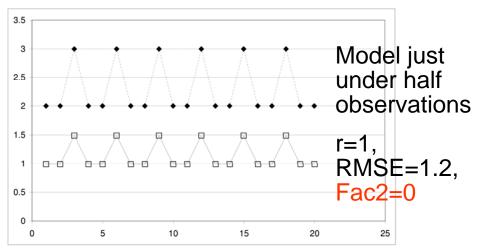
Alistair Manning Met Office

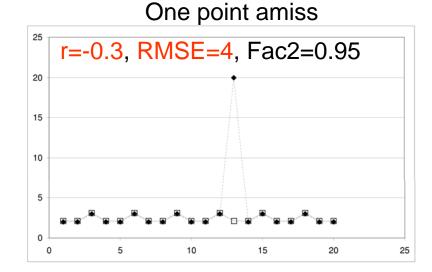
Why estimate regional or country emissions from observations?

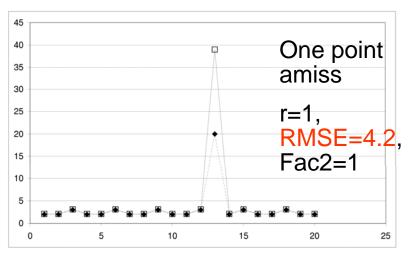
- As part of the UNFCCC (United Nations Framework Climate Change Convention) each developed country has to report its annual anthropogenic emissions of a range of greenhouse gases (GHG).
 - CO₂, CH₄, N₂O, HFCs, SF₆, PFCs
- Traditional inventory approach ('bottom-up').
 - Combines Activity Data (activities that result in the emission of a GHG e.g. landfill waste) and Emission Factors (links a specific activity to an emission).
 - Sum emissions per sector (industry, agriculture, energy, waste, etc) per gas to estimate an annual country GHG emission total.
- Emissions from observations: Inversion modelling ('top-down').
 - Challenge traditional emission inventories.
 - Completely independent.
 - Best practice for Kyoto Protocol although not mandatory.
- Both bottom-up and top-down methods have uncertainty.

Inversion modelling


- Information required:
 - How emissions dilute in the atmosphere as they travel from a source region to an observation point.
 - Atmospheric transport (dispersion) model underpinned by meteorology.
 - Precise observations preferably at high temporal resolution.
- Output:
 - Spatial distribution and magnitude of emissions.
- Challenge:
 - Maximising the match in concentration between the modelled (estimated given an emission map) and measured (truth) time-series.


Comparing measured and modelled Met Office time-series of concentration


- Inversion Model
 - Uses a grid of emissions, fixed within a time frame (emission map).
 - Estimates the contribution each grid makes to an observation in each time period.
 - Uses a dispersion model and modelled meteorology.
 - Sums contributions from each grid to estimate total time-series of concentration.
 - Searches for the emission map that produces model time-series that has the best statistical match to the observed time-series.
- Statistical Match
 - What statistical function to use to measure the quality of the fit?
 - Common functions (there are many more):
 - root mean square error (RMSE),
 - correlation coefficient (*r*),
 - fraction within a factor of two (FAC2).
 - Each statistic has strengths but also some weaknesses.



Simple artificial examples of statistical measures

Additional knowledge can help the inversion

- Inversion models can use additional information to better constrain the emission map.
 - E.g. knowledge about how the emissions are distributed (*a priori*).
- An emission map is penalised for moving away from the *a priori*.
 - I.e. the benefit in terms of a better time-series fit needs to outweigh the penalty of an emission map more distant from the *a priori*.
- How to price the distance from the *a priori* solution relative to the statistical fit of the modelled time-series to the observations?
 - related to the perceived quality of the *a priori* (subjective).
 - Usually defined as a percentage relative to the *a priori* solution, e.g. 100% uncertainty.
 - If a priori estimate is small this does not give much leeway.
 - New or unexpected sources or those significantly different from the *a priori* estimate struggle to be seen in the inversion.
- A good a priori estimate can significantly improve the robustness of the final solution. A poor one is detrimental.
- If inventory data used then inversion solution is not independent.

Transport (dispersion) model

Met Office

- Critical component of inversion system.
 - Describe how emissions dilute with distance and where they go.
- 2 components: Meteorology and Dispersion.
- 3-D wind, temperature and boundary layer information on a grid from Numerical Weather Prediction (NWP) models.
 - Use short-term forecast 0-3 hours corrected for by observations.
 - Resolution varies between models (25-80 km globally up to 1.5 km country scale).
 - NWP models do not 'see' everything. Sub-grid features not represented, i.e. sharp changes in orographic features e.g. steep mountains, valleys or coasts. NWP 'sees' average flow in grid.

• Flat terrain sites are usually ideal as the flow well represented by NWP.

Cabauw Tower The Netherlands

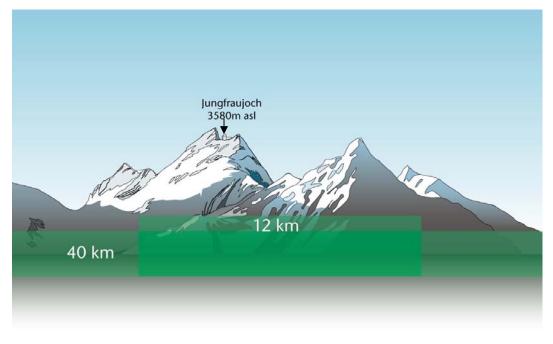
• Coastal stations are affected by (sub-grid scale) land-sea breezes but benefit from a 'clean' well mixed sea sector.

Mace Head West coast Ireland

Angus Tower, Scotland, UK 222 m

- Elevated observations (tower) more representative of grid average.
- Ground is heterogeneous and thus complex.
- Potentially difficult to decide whether measurement within Boundary Layer (BL) or not (profile of observations valuable for this).
 - BL notoriously difficult to estimate in NWP models.

Stations in mountainous areas are very challenging!



Jungfraujoch station in the Swiss Alps.

Where is the measurement station?

- Which point in 3-D model atmosphere is most representative of the observed air?
- Surface station at Jungfraujoch in the Alps (3580 m asl).
 - •On saddle between two mountains with valleys on either side.
 - UK Met Office global model 40 km: ground level = 1760 m.
 - UK Met Office North Atlantic European model 12 km: ground = 2110 m.

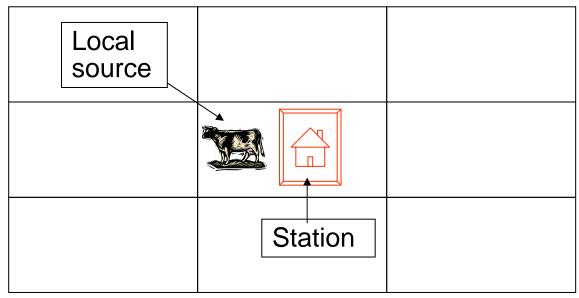
Where is the measurement station?

- Night flow reaching the station probably disconnected from ground (above boundary layer [BL]) and best represented by a model point at 3580 m a.s.l. (i.e. 1.8 km above global model ground).
- Day station probably influenced by upslope surface winds from the valleys and best represented by model point on the model ground.
- When does it switch?
- Difficult to model => Challenging to interpret observations.

Impact of station location

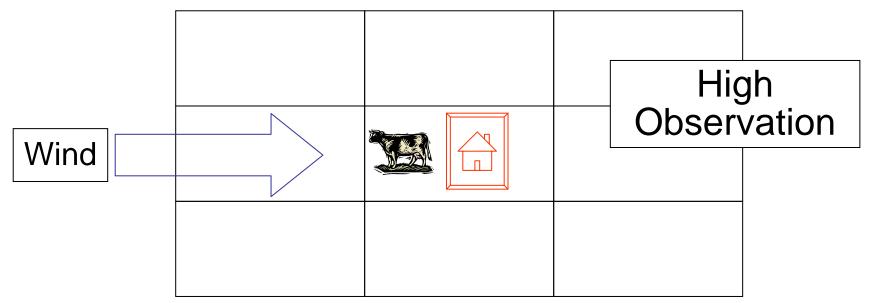
Annual difference of more than 400 3-hr periods

Maximum value = 1.12e+03

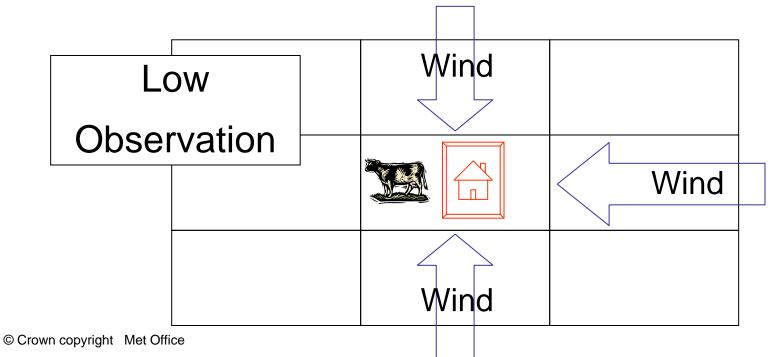

0.00e+00 4.00e+02 1.60e+03

- Difference between whether modelled Jungfraujoch is on ground or above BL is significant.
- Surface regional emissions more readily impact station when modelled on the ground.
- Strong impact on inversion solution.
- Smaller impacts in less severe topography.

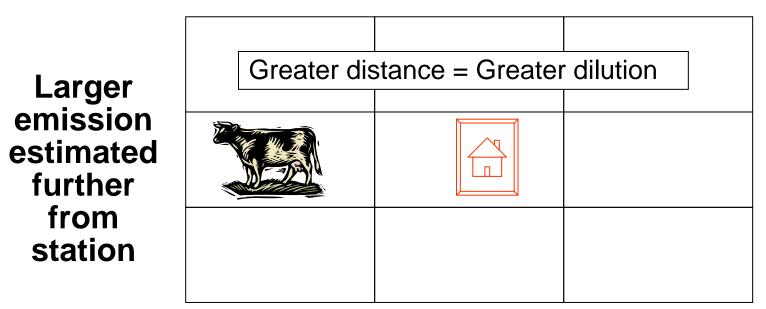
Met Office


- Inversion emission map has a defined horizontal grid and a specified time window. During this time emissions are assumed constant in each grid.
- Intermittent emissions or large sources near to the monitoring station will cause problems for inversion.
- Incorrectly placed emissions will lead to over- or under- estimates.

Met Office


- Inversion emission map has a defined horizontal grid and a specified time window. During this time emissions are assumed constant in each grid.
- Intermittent emissions or large sources near to the monitoring station will cause problems for inversion.
- Incorrectly placed emissions will lead to over- or under- estimates.

Met Office


- Inversion emission map has a defined horizontal grid and a specified time window. During this time emissions are assumed constant in each grid.
- Intermittent emissions or large sources near to the monitoring station will cause problems for inversion.
- Incorrectly placed emissions will lead to over- or under- estimates.

Met Office

- Inversion emission map has a defined horizontal grid and a specified time window. During this time emissions are assumed constant in each grid.
- Intermittent emissions or large sources near to the monitoring station will cause problems for inversion.
- Incorrectly placed emissions will lead to over- or under- estimates.

Selecting the observations to use in the inversion

- Increasing the number of observations can help the inversion model (better triangulation).
 - Flask (weekly) to high-frequency (hourly).
 - Observations from multiple measurement stations.
 - Improves knowledge about the distribution and magnitude of sources.
- Multiple stations Are the observations inter-comparable? Would both instruments measure the same value if side by side?
- Removing observations that maybe too challenging to model e.g.
 - low wind speed conditions (local sources dominate).
 - day time values in mountainous areas (flow complex).

Uncertainty in inversion models

- Sources of uncertainty:
 - Observation error,
 - Error in modelled meteorology,
 - Error in the transport and dilution of pollution.
 - Error in inversion method (statistical fit)
- Difficult to assess the total uncertainty but vital to try. Possible ways to test robustness of inversion solutions:
 - Randomly perturb or randomly sub-sample observations,
 - Use multiple NWP models (ensemble),
 - Use multiple inversion methods (inversion ensemble),
 - Change uncertainty level when using a priori information.

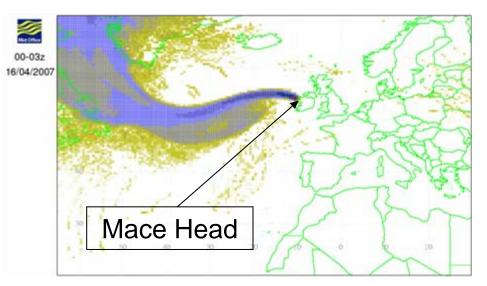
Examples of inversion modelling

•NAME-inversion method:

- Example: HFC-134a.
- Principle use: mobile (car) air conditioning units.

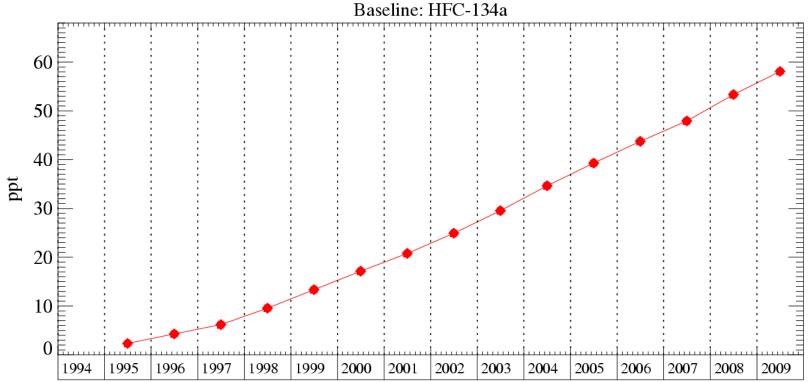
• NitroEurope 5-year EU project:

- Multiple inversion models.
- Example: CH₄ (methane).
- Principle emissions: farming, waste, energy.



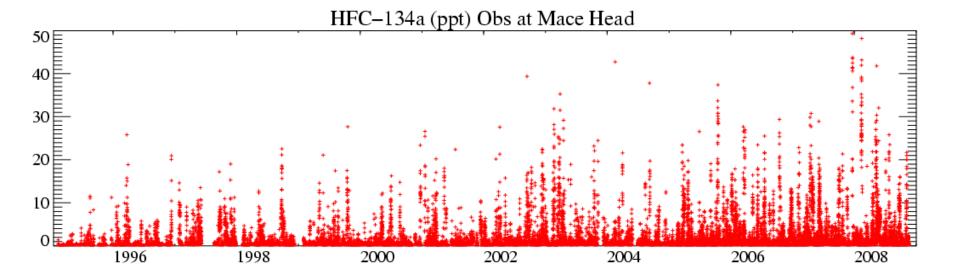
NAME-inversion method

- NAME model (Lagrangian particle) dispersion model).
- Uses 3D meteorological data from UK Met Office NWP and ECMWF models (40-80 km resolution).
- Derive air history map for Mace head for a 3-hour period:
 - Combination of tens of thousands of trajectories.
 - Darker shade means greater contribution from that area.
 - All surface sources within previous 12 days of travel that contribute to an observation during a 3-hour period are recorded.

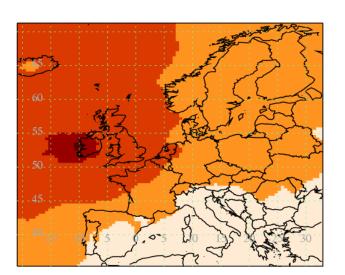

Maps generated for each 3-hour period:

1994 onwards

- Select observations when air come from Atlantic and wind speed high.
- Smooth 'baseline' data and derive Northern Hemisphere background concentration.

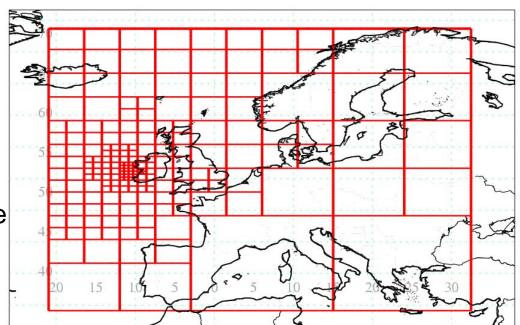

Mace Head data (AGAGE) from Simon O'Doherty at Bristol University

Regional emissions produce observations above baseline


Aim: Generate emission estimates from 'polluted' (above baseline) observations.

Subtract the baseline concentration from each observation.

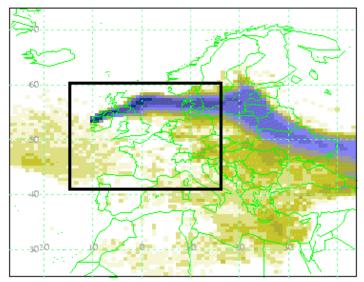
What regions influence Mace Head?


Increase size of solution grid as influence on Mace Head decreases.

Composite of air-history maps.

Greatest influence: Ireland, UK, northern France and Benelux countries.

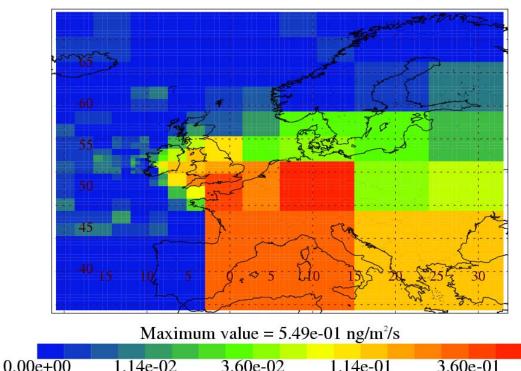
Lesser influence: southern France, Germany, Denmark.


Poor influence: Mediterranean countries.

NAME-inversion technique

Measurement - Baseline = \underline{m} Emission Map = \underline{e} (the solution) Relationship: A $\underline{e} = \underline{m}$ Problem: Minimise $\underline{m} - A \underline{e}$ Air Origin Map = Matrix A (N^o times x N^o grids)

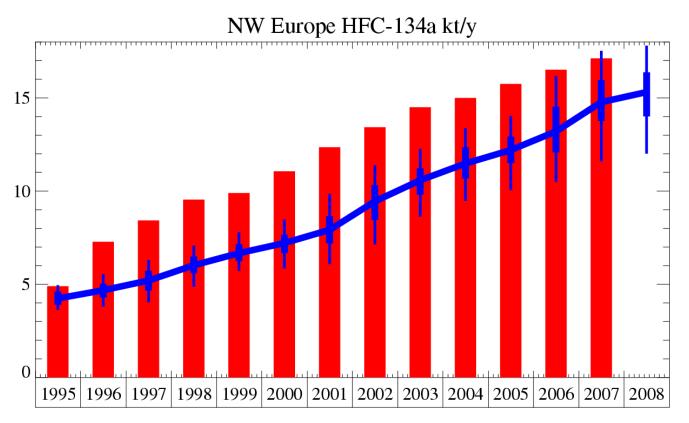
- Remove observations that have a strong **local** influence.
- Scale emissions (**iteration**) to obtain **best-fit** statistical match between model time-series and observations.
- No prior information Random initial guess.
- Solve for each 3-yr period iterating monthly e.g. Jan'05 Dec'07, Feb'05 Jan'08, ...
- Repeat **multiple** times, each time start from different random initial guess.
- Apply random 'noise' to observations (different for each inversion).

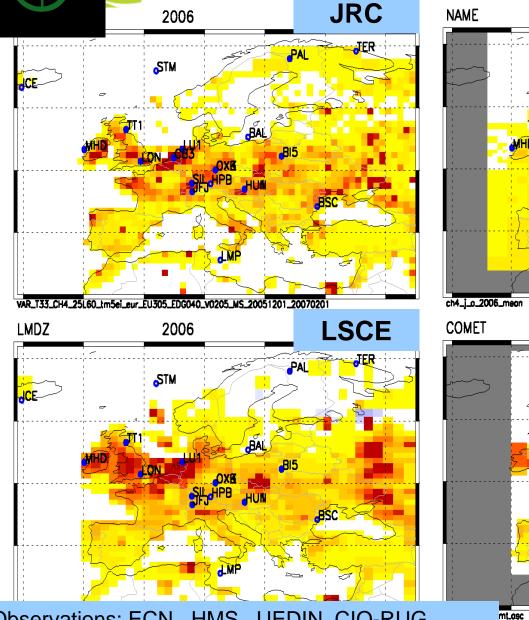


NAME-Inversion Results: HFC-134a

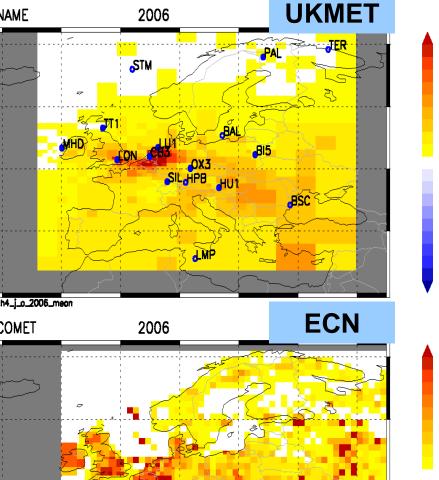
Mean emission distribution of HFC-134a that best fits the observations:

May 2006 – April 2009.

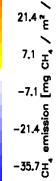

0605-0904 MapT= 42.0 Kt/y


HFC-134a emissions: N.W. Europe

Inventory estimates (UNFCCC 2009)



NAME-inversion estimates with uncertainty


NitroEurope: CH₄ inversion 2006

Observations: ECN, HMS, UEDIN, CIO-RUG, RHUL, FMI, UBA(D), EMPA, AGAGE, ENEA, NOAA

preliminary results

35.7 7

21.4

7.1

-7.1 ڦ

-21.4.6

−35.7 ਨੂੰ

35.7 2

- Inversion models can be used to estimate regional emissions.
 - Compare with existing inventories.
 - Investigate compliance (verification).
- Important issues to consider:
 - Statistical measures, a priori knowledge, dispersion and meteorological models, location of measurement station, local emissions, observations data selection.
 - Uncertainty in methodology.